当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Spectral Clustering Revisited: Information Hidden in the Fiedler Vector
arXiv - CS - Discrete Mathematics Pub Date : 2020-03-22 , DOI: arxiv-2003.09969
Adela DePavia; Stefan Steinerberger

We are interested in the clustering problem on graphs: it is known that if there are two underlying clusters, then the signs of the eigenvector corresponding to the second largest eigenvalue of the adjacency matrix can reliably reconstruct the two clusters. We argue that the vertices for which the eigenvector has the largest and the smallest entries, respectively, are unusually strongly connected to their own cluster and more reliably classified than the rest. This can be regarded as a discrete version of the Hot Spots conjecture and should be useful in applications. We give a rigorous proof for the stochastic block model and several examples.
更新日期:2020-03-24

 

全部期刊列表>>
如何通过Nature平台传播科研成果
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
中洪博元
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
郭东升
汪铭
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug