当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
Mutants and Residents with Different Connection Graphs in the Moran Process
arXiv - CS - Discrete Mathematics Pub Date : 2017-10-19 , DOI: arxiv-1710.07365
Themistoklis Melissourgos; Sotiris Nikoletseas; Christoforos Raptopoulos; Paul Spirakis

The Moran process, as studied by Lieberman et al. [L05], is a stochastic process modeling the spread of genetic mutations in populations. In this process, agents of a two-type population (i.e. mutants and residents) are associated with the vertices of a graph. Initially, only one vertex chosen u.a.r. is a mutant, with fitness $r > 0$, while all other individuals are residents, with fitness $1$. In every step, an individual is chosen with probability proportional to its fitness, and its state (mutant or resident) is passed on to a neighbor which is chosen u.a.r. In this paper, we introduce and study for the first time a generalization of the model of [L05] by assuming that different types of individuals perceive the population through different graphs, namely $G_R(V,E_R)$ for residents and $G_M(V,E_M)$ for mutants. In this model, we study the fixation probability, i.e. the probability that eventually only mutants remain in the population, for various pairs of graphs. First, we transfer known results from the original single-graph model of [L05] to our 2-graph model. Among them, we provide a generalization of the Isothermal Theorem of [L05], that gives sufficient conditions for a pair of graphs to have the same fixation probability as a pair of cliques. Next, we give a 2-player strategic game view of the process where player payoffs correspond to fixation and/or extinction probabilities. In this setting, we attempt to identify best responses for each player and give evidence that the clique is the most beneficial graph for both players. Finally, we examine the possibility of efficient approximation of the fixation probability. We show that the fixation probability in the general case of an arbitrary pair of graphs cannot be approximated via a method similar to [D14]. Nevertheless, we provide a FPRAS for the special case where the mutant graph is complete.
更新日期:2020-03-24

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
中洪博元
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
南开大学
朱守非
廖良生
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug