当前位置: X-MOL 学术ChemSusChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
All-Solid-State Lithium-Organic Batteries Comprising Single-Ion Polymer Nanoparticle Electrolytes.
ChemSusChem ( IF 7.5 ) Pub Date : 2020-04-20 , DOI: 10.1002/cssc.202000117
Boram Kim 1 , Haneol Kang 1 , Kyoungwook Kim 1 , Rui-Yang Wang 1 , Moon Jeong Park 1
Affiliation  

Advances in lithium battery technologies necessitate improved energy densities, long cycle lives, fast charging, safe operation, and environmentally friendly components. This study concerns lithium-organic batteries comprising bioinspired poly(4-vinyl catechol) (P4VC) cathode materials and single-ion conducting polymer nanoparticle electrolytes. The controlled synthesis of P4VC results in a two-step redox reaction with voltage plateaus at around 3.1 and 3.5 V, as well as a high initial specific capacity of 352 mAh g-1 . The use of single-ion nanoparticle electrolytes enables high electrochemical stabilities up to 5.5 V, a high lithium transference number of 0.99, high ionic conductivities, ranging from 0.2×10-3 to 10-3  S cm-1 , and stable storage moduli of >10 MPa at 25-90 °C. Lithium cells can deliver 165 mAh g-1 at 39.7 mA g-1 for 100 cycles and stable specific capacities of >100 mAh g-1 at a high current density of 794 mA g-1 for 500 cycles. As the first successful demonstration of solid-state single-ion polymer electrolytes in environmentally benign and cost-effective lithium-organic batteries, this work establishes a future research avenue for advancing lithium battery technologies.

中文翻译:

包含单离子聚合物纳米粒子电解质的全固态锂有机电池。

锂电池技术的进步需要提高能量密度,延长使用寿命,快速充电,安全操作和环保组件。这项研究涉及锂有机电池,该电池包含生物启发的聚(4-乙烯基邻苯二酚)(P4VC)阴极材料和单离子导电聚合物纳米颗粒电解质。P4VC的受控合成导致两步氧化还原反应,电压稳定在3.1和3.5 V左右,初始比容量较高,为352 mAh g-1。单离子纳米粒子电解质的使用可实现高达5.5 V的高电化学稳定性,高达0.99的锂转移数,0.2×10-3至10-3 S cm-1的高离子电导率以及稳定的储能模量。在25-90°C下> 10 MPa。锂电池在39时可提供165 mAh g-1。7 mA g-1(100个循环)和大于100 mAh g-1的稳定比容量,在794 mA g-1的高电流密度下进行500个循环。作为对环境友好且具有成本效益的锂有机电池中固态单离子聚合物电解质的首次成功演示,这项工作为发展锂电池技术建立了未来的研究途径。
更新日期:2020-04-20
down
wechat
bug