当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental demonstration of memory-enhanced quantum communication
Nature ( IF 50.5 ) Pub Date : 2020-03-23 , DOI: 10.1038/s41586-020-2103-5
M K Bhaskar 1 , R Riedinger 1 , B Machielse 1 , D S Levonian 1 , C T Nguyen 1 , E N Knall 2 , H Park 1, 3 , D Englund 4 , M Lončar 2 , D D Sukachev 1 , M D Lukin 1
Affiliation  

The ability to communicate quantum information over long distances is of central importance in quantum science and engineering1. Although some applications of quantum communication such as secure quantum key distribution2,3 are already being successfully deployed4,5,6,7, their range is currently limited by photon losses and cannot be extended using straightforward measure-and-repeat strategies without compromising unconditional security8. Alternatively, quantum repeaters9, which utilize intermediate quantum memory nodes and error correction techniques, can extend the range of quantum channels. However, their implementation remains an outstanding challenge10,11,12,13,14,15,16, requiring a combination of efficient and high-fidelity quantum memories, gate operations, and measurements. Here we use a single solid-state spin memory integrated in a nanophotonic diamond resonator17,18,19 to implement asynchronous photonic Bell-state measurements, which are a key component of quantum repeaters. In a proof-of-principle experiment, we demonstrate high-fidelity operation that effectively enables quantum communication at a rate that surpasses the ideal loss-equivalent direct-transmission method while operating at megahertz clock speeds. These results represent a crucial step towards practical quantum repeaters and large-scale quantum networks20,21.



中文翻译:

记忆增强量子通信的实验演示

长距离传输量子信息的能力在量子科学和工程中至关重要1。尽管量子通信的一些应用,如安全量子密钥分发2,3已经成功部署4,5,6,7,但它们的范围目前受到光子损失的限制,并且无法使用直接的测量和重复策略进行扩展而不妥协无条件安全8.或者,利用中间量子存储器节点和纠错技术的量子中继器9可以扩展量子通道的范围。然而,它们的实施仍然是一个突出的挑战10,11,12,13,14,15,16,需要结合高效和高保真量子存储器、门操作和测量。在这里,我们使用集成在纳米光子金刚石谐振器17、18、19中的单个固态自旋存储器来实现异步光子贝尔态测量,这是量子中继器的关键组件。在原理验证实验中,我们展示了高保真操作,该操作有效地实现了量子通信,其速率超过了理想的损耗等效直接传输方法,同时以兆赫时钟速度运行。这些结果代表了迈向实用量子中继器和大规模量子网络的关键一步20,21

更新日期:2020-03-23
down
wechat
bug