当前位置: X-MOL 学术Int. J. Adv. Manuf. Technol. › 论文详情
Neural networks for trajectory evaluation in direct laser writing
The International Journal of Advanced Manufacturing Technology ( IF 2.496 ) Pub Date : 2020-03-23 , DOI: 10.1007/s00170-020-05086-3
Anton Bauhofer, Chiara Daraio

Abstract Material shrinkage commonly occurs in additive manufacturing and compromises the fabrication quality by causing unwanted distortions or residual stresses in fabricated parts. Even though it is known that the resulting deformations and stresses are highly dependent on the writing trajectory, no effective strategy for choosing suitable trajectories has been reported to date. Here, we present a path to achieve this goal in direct laser writing, an additive manufacturing method based on photopolymerization that commonly suffers from strong shrinkage-induced effects. First, we introduce a method for measuring the shrinkage of distinct direct laser written lines. We then introduce a semi-empirical numerical model to capture the interplay of sequentially polymerized material and the resulting macroscopic effects. Finally, we implement an artificial neural network to evaluate given laser trajectories in terms of the resulting part quality. The presented approach proves feasibility of using artificial neural networks to assess the quality of 3D printing trajectories and thereby demonstrates a potential route for reducing the impact of material shrinkage on 3D printed parts.
更新日期:2020-03-24

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug