当前位置: X-MOL 学术Soft Comput. › 论文详情
Weighted-fusion feature of MB-LBPUH and HOG for facial expression recognition
Soft Computing ( IF 2.784 ) Pub Date : 2019-10-29 , DOI: 10.1007/s00500-019-04380-x
Yan Wang, Ming Li, Congxuan Zhang, Hao Chen, Yuming Lu

Abstract Obtaining a useful and discriminative feature for facial expression recognition (FER) is a hot research topic in computer vision. In this paper, we propose a novel facial expression representation for FER. Firstly, we select the appropriate parameter of multi-scale block local binary pattern uniform histogram (MB-LBPUH) operator to filter the facial images for representing the holistic structural features. Then, normalizing the filtered images into a uniform basis reduces the computational complexity and remains the full information. An MB-LBPUH feature and a HOG feature are concatenated to fuse a new feature representation for characterizing facial expressions. At the same time, weighting the MB-LBPUH feature can remove the data unbalance from a fusion feature. The weighted-fusion feature reflects not only global facial expressions structure patterns but also characterizes local expression texture appearance and shape. Finally, we utilize principal component analysis for dimensionality reduction and employ support vector machine to classification. Experimental results demonstrate that the proposed algorithm exhibits superior performance compared with the existing algorithms on JAFFE, CK+, and BU-3DFE datasets.
更新日期:2020-03-24

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug