当前位置: X-MOL 学术J. Comput. Appl. Math. › 论文详情
A sixth order numerical method and its convergence for generalized Black–Scholes PDE
Journal of Computational and Applied Mathematics ( IF 1.883 ) Pub Date : 2020-03-23 , DOI: 10.1016/j.cam.2020.112881
Pradip Roul; V.M.K. Prasad Goura

The main aim of this paper is to construct a new computational approach for the numerical solution of generalized Black–Scholes equation. In this approach, the temporal variable is discretized using Cranck-Nicolson scheme and spatial variable is discretized using sextic B-spline collocation method. Convergence analysis of the method is discussed. The proposed method is proved to be stable and have the second-order convergence with respect to time variable and sixth order convergence with respect to space variable. To illustrate the applicability and efficiency of the proposed method, we consider some benchmark problems describing European call options. Numerical results verify the orders of convergence predicted by the analysis. Numerical results reveal that the present method provides better results as compared to some existing numerical methods based on B-spline collocation approach.
更新日期:2020-03-24

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
香港大学化学系刘俊治
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug