当前位置: X-MOL 学术Discret. Math. › 论文详情
Long monochromatic paths and cycles in 2-colored bipartite graphs
Discrete Mathematics ( IF 0.728 ) Pub Date : 2020-03-23 , DOI: 10.1016/j.disc.2020.111907
Louis DeBiasio; Robert A. Krueger

Gyárfás and Lehel and independently Faudree and Schelp proved that in any 2-coloring of the edges of Kn,n there exists a monochromatic path on at least 2⌈n∕2⌉ vertices, and this is tight. We prove a stability version of this result which holds even if the host graph is not complete; that is, for every γ≫η>0 and n≥n0(γ), if G is a balanced bipartite graph on 2n vertices with minimum degree at least (3∕4+γ)n, then in every 2-coloring of the edges of G, either there exists a monochromatic cycle on at least (1+η)n vertices, or the coloring of G is close to an extremal coloring — in which case G has a monochromatic path on at least 2⌈n∕2⌉ vertices and a monochromatic cycle on at least 2⌊n∕2⌋ vertices. Furthermore, we determine an asymptotically tight bound on the length of a longest monochromatic cycle in a 2-colored balanced bipartite graph on 2n vertices with minimum degree δn for all 0≤δ≤1.
更新日期:2020-03-24

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug