当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
Learning discriminative domain-invariant prototypes for generalized zero shot learning
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2020-03-24 , DOI: 10.1016/j.knosys.2020.105796
Yinduo Wang; Haofeng Zhang; Zheng Zhang; Yang Long; Ling Shao

Zero-shot learning (ZSL) aims to recognize objects of target classes by transferring knowledge from source classes through the semantic embeddings bridging. However, ZSL focuses the recognition only on unseen classes, which is unreasonable in realistic scenarios. A more reasonable way is to recognize new samples on combined domains, namely Generalized Zero Shot Learning (GZSL). Due to the fact that the source domain and target domain are disjoint and have unrelated classes potentially, ZSL and GZSL often suffer from the problem of projection domain shift. Besides, some semantic embeddings of prototypes are very similar, which makes the recognition less discriminative. To circumvent these issues, in this paper, we propose a novel method, called Learning Discriminative Domain-Invariant Prototypes (DDIP). In DDIP, both target and source domains are combined and projected into a hyper-spherical space, which is automatically learned by a regularized dictionary learning. In addition, an orthogonal constraint is employed to the latent hyper-spherical space to ensure all the class prototypes, including seen classes and unseen classes, to be orthogonal to each other to make them more discriminative. Extensive experiments on four popular benchmark and a large-scale datasets are conducted on both GZSL and standard ZSL settings, and the results show that our DDIP can outperform the state-of-the-art methods.
更新日期:2020-03-24

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug