当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
Inverse projection group sparse representation for tumor classification: A low rank variation dictionary approach
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2020-03-23 , DOI: 10.1016/j.knosys.2020.105768
Xiaohui Yang; Xiaoying Jiang; Chenxi Tian; Pei Wang; Funa Zhou; Hamido Fujita

Sparse representation based classification (SRC) achieves good results by addressing recognition problem with sufficient training samples per subject. Tumor classification, however, is a typical small sample problem. In this paper, an inverse projection group sparse representation (IPGSR) model is presented for tumor classification based on constructing a low rank variation dictionary (LRVD), for short, LRVD-IPGSR model. Firstly, an IPGSR model is constructed based on making full use of existing training and test samples, and group sparsity effect of genetic data. Furthermore, from a new viewpoint, a LRVD is constructed for improving the performance of IPGSR-based tumor classification. The LRVD can be independently constructed by detecting and utilizing variations of normals and typical patients, rather than directly using and changed with the genetic data or their corresponding feature data. And the LRVD can be automatic updated and extended to fit the case of new types of diseases. Finally, the LRVD-IPGSR model is fully analyzed from feasibility, stability, optimization and convergence. The performance of the LRVD-IPGSR model-based tumor classification framework is verified on eight microarray gene expression datasets, which contain early diagnosis, tumor type recognition and postoperative metastasis.
更新日期:2020-03-24

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
中洪博元
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug