当前位置: X-MOL 学术Earth Planet. Sci. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A possible high-temperature origin of the Moon and its geochemical consequences
Earth and Planetary Science Letters ( IF 5.3 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.epsl.2020.116222
E.S. Steenstra , J. Berndt , S. Klemme , Y. Fei , W. van Westrenen

Abstract The formation of the Moon is thought to be the result of a giant impact between a Mercury-to-proto-Earth-sized body and the proto-Earth. However, the initial thermal state of the Moon following its accretion is not well constrained by geochemical data. Here, we provide geochemical evidence that supports a high-temperature origin of the Moon by performing high-temperature (1973–2873 K) metal-silicate partitioning experiments, simulating core formation in the newly-formed Moon. Results indicate that the observed lunar mantle depletions of Ni and Co record extreme temperatures (>2600–3700 K depending on assumptions about the composition of the lunar core) during lunar core formation. This temperature range is within range of the modeled silicate evaporation buffer in a synestia-type environment. Our results provide independent geochemical support for a giant-impact origin of the Moon and show that lunar thermal models should start with a fully molten Moon. Our results also provide quantitative constraints on the effects of high-temperature lunar differentiation on the lunar mantle geochemistry of volatile, and potentially siderophile elements Cu, Zn, Ga, Ge, Se, Sn, Cd, In, Te and Pb. At the extreme temperatures recorded by Ni and Co, many of these elements behave insufficiently siderophile to explain their depletions by core formation only, consistent with the inferred volatility-related loss of Cr, Cu, Zn, Ga and Sn during the Moon-forming event and/or subsequent magma-ocean degassing.

中文翻译:

月球可能的高温起源及其地球化学后果

摘要 月球的形成被认为是水星到原地球大小的天体与原地球之间巨大撞击的结果。然而,月球吸积后的初始热状态并没有受到地球化学数据的很好限制。在这里,我们通过进行高温 (1973-2873 K) 金属硅酸盐分配实验,模拟新形成的月球中的核心形成,提供支持月球高温起源的地球化学证据。结果表明,在月球核心形成过程中,观测到的月球地幔镍和钴的消耗记录了极端温度(>2600-3700 K,取决于对月球核心成分的假设)。该温度范围在 Synestia 型环境中模拟的硅酸盐蒸发缓冲范围内。我们的结果为月球的巨大撞击起源提供了独立的地球化学支持,并表明月球热模型应该从完全熔化的月球开始。我们的研究结果还提供了月球高温分化对挥发性和潜在亲铁元素铜、锌、镓、锗、硒、锡、镉、铟、碲和铅的月球地幔地球化学影响的定量限制。在 Ni 和 Co 记录的极端温度下,许多这些元素的亲铁性不足以解释它们仅通过核心形成的消耗,这与月球形成事件期间推断的 Cr、Cu、Zn、Ga 和 Sn 的挥发性相关损失一致和/或随后的岩浆海洋脱气。我们的研究结果还提供了月球高温分化对挥发性和潜在亲铁元素铜、锌、镓、锗、硒、锡、镉、铟、碲和铅的月球地幔地球化学影响的定量限制。在 Ni 和 Co 记录的极端温度下,许多这些元素的亲铁性不足以解释它们仅通过核心形成的消耗,这与月球形成事件期间推断的 Cr、Cu、Zn、Ga 和 Sn 的挥发性相关损失一致和/或随后的岩浆海洋脱气。我们的研究结果还提供了月球高温分化对挥发性和潜在亲铁元素铜、锌、镓、锗、硒、锡、镉、铟、碲和铅的月球地幔地球化学影响的定量限制。在 Ni 和 Co 记录的极端温度下,许多这些元素的亲铁性不足以解释它们仅通过核心形成的消耗,这与月球形成事件期间推断的 Cr、Cu、Zn、Ga 和 Sn 的挥发性相关损失一致和/或随后的岩浆海洋脱气。
更新日期:2020-05-01
down
wechat
bug