当前位置: X-MOL 学术Phys. Rev. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Designing sub-10 nm metal-oxide–semiconductor field-effect transistors via ballistic transport and disparate effective mass: A case of two-dimensional BiN
Physical Review Applied ( IF 3.8 ) Pub Date : 
Wenhan Zhou, Shengli Zhang, Shiying Guo, Yangyang Wang, Jing Lu, Xing Ming, Zhi Li, Hengze Qu, and Haibo Zeng

In the Post-Moore era, improving energy efficiency is an urgent requirement for micro-electronics towards the Internet of Things, Artificial Intelligence, 5th-Generation. Especially, 2D materials with natural passivation, gate electrostatics, and high mobility have attracted significant attention in integrated circuits in the race towards next-generation field-effect transistors (FETs). Here, coupling with first-principles and nonequilibrium Green’s function approaches, we performed a physical understanding of the ballistic transport properties of a novel V-V binary bismuth-nitride (BiN) material. Promisingly, monolayer BiN holds the sharp conduction band and flat valence band edges, which exhibits disparate effective mass. The simulated sub-10 nm monolayer BiN transistors present potential device performance and fulfill the high-performance (HP) and low-power (LP) requirements of the International Technology Roadmap for Semiconductors (ITRS) 2028 goals with the optimal parameters. Furthermore, by comprehensively analyzing the effective mass, density of states, on-state current, sub-threshold swing, etc., the materials whose band dispersion with the extreme feature have more advantages in transistors. Also, a benchmark of energy-delay product confirms that BiN FETs possess sufficient competitiveness among other 2D FETs. We believe that it could be a guidance for designing potential channel materials for next-generation FETs.

中文翻译:

通过弹道传输和不同的有效质量设计低于10 nm的金属氧化物半导体场效应晶体管:二维BiN案例

在后摩尔时代,提高能源效率是微电子向物联网,人工智能(第五代)的迫切要求。特别是,具有自然钝化,栅极静电和高迁移率的2D材料在争夺下一代场效应晶体管(FET)的竞争中引起了集成电路的极大关注。在这里,结合第一性原理和非平衡格林函数方法,我们对新型VV二元氮化铋(BiN)材料的弹道传输特性进行了物理理解。很有希望的是,单层BiN拥有清晰的导带和平坦的价带边缘,这​​显示出不同的有效质量。经过仿真的10纳米以下单层BiN晶体管具有潜在的器件性能,并以最佳参数满足了《国际半导体技术路线图(ITRS)2028》目标的高性能(HP)和低功耗(LP)要求。此外,通过综合分析有效质量,状态密度,通态电流,亚阈值摆幅等,具有极高特征的带分散的材料在晶体管中具有更多优势。同样,能量延迟产品的基准也证明BiN FET在其他2D FET中具有足够的竞争力。我们认为,这可以为设计下一代FET的潜在沟道材料提供指导。此外,通过综合分析有效质量,状态密度,通态电流,亚阈值摆幅等,具有极高特征的带分散的材料在晶体管中具有更多优势。同样,能量延迟产品的基准也证明BiN FET在其他2D FET中具有足够的竞争力。我们认为,这可以为设计下一代FET的潜在沟道材料提供指导。此外,通过综合分析有效质量,状态密度,通态电流,亚阈值摆幅等,具有极高特征的带分散的材料在晶体管中具有更多优势。同样,能量延迟产品的基准也证实了BiN FET在其他2D FET中具有足够的竞争力。我们认为,这可以为设计下一代FET的潜在沟道材料提供指导。
更新日期:2020-03-24
down
wechat
bug