当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rationally Designed Three-Dimensional N-Doped Graphene Architecture Mounted with Ru Nanoclusters as a High-Performance Air Cathode for Lithium–Oxygen Batteries
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-03-24 , DOI: 10.1021/acssuschemeng.0c01237
Mingrui Liu 1 , Kailing Sun 1 , Qinghua Zhang 2 , Tang Tang 3 , Lulu Huang 1 , Xiuhua Li 1 , Xiaoyuan Zeng 4 , Jinsong Hu 3 , Shijun Liao 1
Affiliation  

To enhance the electrochemical performance of lithium–air/oxygen batteries, it is extremely important to design and synthesize cathodes with porous structures and bifunctional catalytic activity. Graphene mounted with ruthenium nanoparticles is presently one of the best cathodes for the Li–O2 battery, but its excellent characteristics are hampered by reduced graphene oxide (rGO) aggregation and irregular crispation, and the costliness of high Ru loading (20–40 wt %) makes its practical application infeasible. To overcome these problems, we prepared nitrogen-doped three-dimensional graphene (3D-NrGO) by the linkage of rGO nanosheets and mounted it with highly dispersed Ru nanoclusters to achieve a reduced Ru loading of 9.37 wt %. The 3D porous structure yields a material with a high specific surface area of 597 m2·g–1and a high doped N content of 7.80 wt %. The resulting Li–O2 battery with Ru/3D-NrGO as a cathode exhibits a high specific capacity of 23922 mA·h·g–1 at 100 mA·g–1, placing it among the best reported capacities thus far. It also achieves a cycling life of 200 cycles with a limited capacity of 1000 mA·h·g–1 with a charge overpotential of 0.94 V. The battery also shows a high rate performance of 8830 mA·h·g–1 at a large discharge current density of 1000 mA·g–1. We find that the 3D linkages enhance the material’s performance by over 20% compared with the material without 3D linkages (7061 mA·h·g–1). In light of the characterization results, we ascribe the ultrahigh performance of the material to its 3D linked-sheet structure, which yields a highly efficient surface area through effectively preventing aggregation and crimping in the graphene sheets. In addition, N doping and the mounting of Ru nanoclusters give the material high active site density and high ORR/OER activity.

中文翻译:

合理设计的三维N掺杂石墨烯体系结构,装有Ru纳米簇作为锂氧电池的高性能空气阴极

为了增强锂-空气/氧气电池的电化学性能,设计和合成具有多孔结构和双功能催化活性的阴极非常重要。目前,装有钌纳米颗粒的石墨烯是Li–O 2的最佳阴极之一电池,但其卓越的性能因减少的氧化石墨烯(rGO)聚集和不规则的脆化而受到阻碍,而且高Ru含量(20–40 wt%)的昂贵性使其实际应用不可行。为了克服这些问题,我们通过rGO纳米片的连接制备了氮掺杂的三维石墨烯(3D-NrGO),并将其与高度分散的Ru纳米团簇固定在一起,以减少9.37 wt%的Ru负载。3D多孔结构产生的材料具有597 m 2 ·g –1的高比表面积和7.80 wt%的高掺杂N含量。最终的以Ru / 3D-NrGO为阴极的Li–O 2电池在100 mA·g –1时表现出23922 mA·h·g –1的高比容量,使其成为迄今为止报告的最佳容量之一。它还具有200个循环的循环寿命,其极限容量为1000 mA·h·g –1,充电超电势为0.94V。该电池在大容量情况下还显示出8830 mA·h·g –1的高倍率性能。放电电流密度为1000 mA·g –1。我们发现,与没有3D链接的材料(7061 mA·h·g –1)相比,3D链接将材料的性能提高了20%以上。)。根据表征结果,我们将材料的超高性能归因于其3D链接板结构,该结构通过有效防止石墨烯板中的聚集和卷曲而产生了高效的表面积。另外,N掺杂和Ru纳米团簇的安装使材料具有高活性位点密度和高ORR / OER活性。
更新日期:2020-04-23
down
wechat
bug