当前位置: X-MOL 学术Langmuir › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoporous Silver Submicrocubes Layer by Layer Encapsulated with Polyelectrolyte Films: Nonenzymatic Catalysis for Glucose Monitoring.
Langmuir ( IF 3.7 ) Pub Date : 2020-03-27 , DOI: 10.1021/acs.langmuir.9b03972
Perumal Viswanathan 1 , Young Jin Kim 1 , Jong Dal Hong 1
Affiliation  

This article describes the synthesis of nanoporous silver submicrocubes (Np-Ag) capped with poly(allylamine hydrochloride) PAH/poly(styrenesulfonate) PSS bilayers (Np-Ag(PAH/PSS)n, 1 ≤ n ≤ 4) via layer-by-layer (LBL) assembly for the electrochemical glucose sensing. The consecutive LBL encapsulation of Np-Ag (average size ≈530 nm) with positively charged PAH and negatively charged PSS layers was monitored by using ζ-potential analyses, which showed that the sign of the ζ-potential became positive (+10 mV) or negative (−22 mV) depending on the charge of the encapsulating species. The thickness of two PAH/PSS bilayers on the Np-Ag was estimated to be ∼4 nm (consistent with a literature value of ∼1 nm per PAH or PSS layer) on the basis of a high-resolution transmission electron microscopy image of the Np-Ag(PAH/PSS)2. Moreover, the high quality of the polyelectrolyte capping on Np-Ag was evidenced by the elemental mapping analysis of particles (obtained by using high-angle annular dark-field scanning transmission electron microscopy), which showed a uniform spatial distribution of C, N, and S (derived from PAH and PSS layers). Among the four different Np-Ag(PAH/PSS)n (1 ≤ n ≤ 4) electrodes, Np-Ag(PAH/PSS)2 exhibited the highest electrocatalytic activity toward glucose because of the optimal thickness and density of its polyelectrolyte films (fabricated onto Np-Ag). The (Np-Ag(PAH/PSS)2 electrode demonstrated a detection limit of 20 μM, a sensitivity limit of 472.15 μA mM–1 cm–2, and a wide range of detection for glucose at concentrations as high as 23.3 mM along with good selectivity toward glucose. The findings of this study are expected to contribute to improvements in the fabrication and stability of various particle-type catalysts on an electrode surface and to efforts to optimize the device performance using the LBL encapsulation technique.

中文翻译:

纳米多孔银亚微立方逐层封装有聚电解质薄膜:用于葡萄糖监测的非酶催化。

本文介绍了与聚(烯丙胺盐酸盐)PAH /聚(苯乙烯磺酸盐)PSS双层(NP-的Ag(PAH / PSS)封端的纳米多孔银submicrocubes(NP-Ag)的合成Ñ,1个≤ Ñ≤4)通过逐层(LBL)组件进行电化学葡萄糖感测。使用ζ电位分析监测带正电的PAH和带负电的PSS层对Np-Ag的连续LBL封装(平均尺寸≈530nm),这表明ζ电位的符号变为正(+10 mV)或负值(−22 mV),取决于封装物质的电荷。Np-Ag上两个PAH / PSS双层的厚度估计为约4 nm(与每个PAH或PSS层的〜1 nm的文献值一致),这是基于Np-Ag的高分辨率透射电子显微镜图像得出的。 Np-Ag(PAH / PSS)2。此外,通过元素的元素映射分析(通过使用大角度环形暗场扫描透射电子显微镜获得)可以证明在Np-Ag上封端的聚电解质的高质量,结果表明C,N,和S(源自PAH和PSS层)。在四个不同的N-对银(PAH / PSS)Ñ(1≤ Ñ ≤4)电极,NP -银(PAH / PSS)2表现出,因为它的电解质膜的最佳厚度和密度的朝向葡萄糖的最高电催化活性(制成Np-Ag)。(Np-Ag(PAH / PSS)2电极的检测极限为20μM,灵敏度极限为472.15μAmM –1 cm –2,以及对浓度高达23.3 mM的葡萄糖的广泛检测以及对葡萄糖的良好选择性。预期该研究的发现将有助于改善电极表面上各种颗粒型催化剂的制造和稳定性,并有助于使用LBL封装技术优化器件性能。
更新日期:2020-03-27
down
wechat
bug