当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient Gas Transportation Using Bioinspired Superhydrophobic Yarn as the Gas-Siphon Underwater
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-04-02 , DOI: 10.1021/acsami.0c03366
Xiaolong Zhang 1, 2 , Yang Dong 1 , Zhao He 1 , Hanyuan Gong 1 , Xiang Xu 1 , Meiyun Zhao 1 , Hongling Qin 1, 2
Affiliation  

Inspired by the gas-trapped mechanism underwater of Argyroneta aquatica, we prepared a superhydrophobic yarn with a fiber network structure via a facile and environmentally friendly method. Attributed to the low surface energy, the superhydrophobic fiber network structure on the yarn is able to trap and transport bubbles directionally underwater. The functional yarn has good superhydrophobic and superaerophilic properties underwater to realize the directional transport of bubbles underwater without being pumped. We designed demonstration experiments on the antibuoyancy directional bubble transportation, which indicated the feasibility in the applications of gas-related fields. Significantly, on further testing, where the superhydrophobic yarn is put into a U-shaped pipe, we obtain a gas-siphon underwater with a high flux. The superhydrophobic fiber structure yarn can trap the gas underwater to enable the self-starting behavior while no manual intervention is used. The gas-siphon can convey gas over the edge of a vessel and deliver it at a higher level without energy input, which is driven by the differential pressure. The relationship between the differential pressure and the volume flux of transport bubbles is investigated. The experimental results show that the prepared superhydrophobic yarn has the advantages of good stability, easy preparation, and low cost in bubble continuous transportation underwater, which provides a novel strategy for the development and application of new technologies such as directional transportation, separation, exhaustion, and collection of gases in water.

中文翻译:

使用生物启发的超疏水纱作为水下虹吸管的高效气体运输

受到Argyroneta aquatica在水下的气体捕集机制的启发,我们通过一种简便且环保的方法制备了具有纤维网络结构的超疏水纱线。归因于低的表面能,纱线上的超疏水纤维网络结构能够在水下定向捕集和输送气泡。该功能性纱线在水下具有良好的超疏水性和超亲水性,可实现气泡的定向输送,而无需泵送。我们设计了反浮性定向气泡传输的演示实验,表明了在天然气相关领域中应用的可行性。重要的是,在进一步的测试中,将超疏水纱线放入U形管中,我们获得了通量高的水下气体虹吸管。超疏水纤维结构纱可以将气体捕获到水下,从而实现自启动行为,而无需使用手动干预。气体虹吸管可以将气体输送到容器的边缘,并在没有能量输入的情况下以较高的水平输送气体,该能量输入由压差驱动。研究了压差与输送气泡的体积通量之间的关系。实验结果表明,所制备的超疏水性纱线在水下气泡连续运输中具有稳定性好,易于制备,成本低的优点,为定向运输,分离,抽空,分离,排空等新技术的开发和应用提供了新的策略。和收集水中的气体。气体虹吸管可以将气体输送到容器的边缘,并在没有能量输入的情况下以较高的水平输送气体,该能量输入由压差驱动。研究了压差与输送气泡的体积通量之间的关系。实验结果表明,所制备的超疏水性纱线在水下气泡连续运输中具有稳定性好,易于制备,成本低的优点,为定向运输,分离,抽空,分离,排空等新技术的开发和应用提供了新的策略。和收集水中的气体。气体虹吸管可以将气体输送到容器的边缘,并在没有能量输入的情况下以较高的水平输送气体,该能量输入由压差驱动。研究了压差与输送气泡的体积通量之间的关系。实验结果表明,所制备的超疏水性纱线在水下气泡连续运输中具有稳定性好,易于制备,成本低的优点,为定向运输,分离,抽空,分离,排空等新技术的开发和应用提供了新的策略。和收集水中的气体。研究了压差与输送气泡的体积通量之间的关系。实验结果表明,所制备的超疏水性纱线在水下气泡连续运输中具有稳定性好,易于制备,成本低的优点,为定向运输,分离,抽空,分离,排空等新技术的开发和应用提供了新的策略。和收集水中的气体。研究了压差与输送气泡的体积通量之间的关系。实验结果表明,所制备的超疏水性纱线在水下气泡连续运输中具有稳定性好,易于制备,成本低的优点,为定向运输,分离,抽空,分离,排空等新技术的开发和应用提供了新的策略。和收集水中的气体。
更新日期:2020-04-03
down
wechat
bug