当前位置: X-MOL 学术BBA Bioenerg. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spectral tuning of light-harvesting complex II in the siphonous alga Bryopsis corticulans and its effect on energy transfer dynamics.
Biochimica et Biophysica Acta (BBA) - Bioenergetics ( IF 3.4 ) Pub Date : 2020-03-20 , DOI: 10.1016/j.bbabio.2020.148191
Parveen Akhtar 1 , Paweł J Nowakowski 2 , Wenda Wang 3 , Thanh Nhut Do 2 , Songhao Zhao 3 , Giuliano Siligardi 4 , Győző Garab 5 , Jian-Ren Shen 6 , Howe-Siang Tan 2 , Petar H Lambrev 7
Affiliation  

Light-harvesting complex II (LHCII) from the marine green macroalga Bryopsis corticulans is spectroscopically characterized to understand the structural and functional changes resulting from adaptation to intertidal environment. LHCII is homologous to its counterpart in land plants but has a different carotenoid and chlorophyll (Chl) composition. This is reflected in the steady-state absorption, fluorescence, linear dichroism, circular dichroism and anisotropic circular dichroism spectra. Time-resolved fluorescence and two-dimensional electronic spectroscopy were used to investigate the consequences of this adaptive change in the pigment composition on the excited-state dynamics. The complex contains additional Chl b spectral forms - absorbing at around 650 nm and 658 nm - and lacks the red-most Chl a forms compared with higher-plant LHCII. Similar to plant LHCII, energy transfer between Chls occurs on timescales from under hundred fs (mainly from Chl b to Chl a) to several picoseconds (mainly between Chl a pools). However, the presence of long-lived, weakly coupled Chl b and Chl a states leads to slower exciton equilibration in LHCII from B. corticulans. The finding demonstrates a trade-off between the enhanced absorption of blue-green light and the excitation migration time. However, the adaptive change does not result in a significant drop in the overall photochemical efficiency of Photosystem II. These results show that LHCII is a robust adaptable system whose spectral properties can be tuned to the environment for optimal light harvesting.

中文翻译:

虹吸藻Bryopsis corticulans中光捕获复合物II的光谱调谐及其对能量转移动力学的影响。

在光谱学上表征了来自海洋绿色巨藻Bryopsis corticulans的采光复合物II(LHCII),以了解由于适应潮间环境而引起的结构和功能变化。LHCII与陆地植物中的LHCII同源,但具有不同的类胡萝卜素和叶绿素(Chl)组成。这反映在稳态吸收,荧光,线性二色性,圆二色性和各向异性圆二色性光谱中。时间分辨荧光和二维电子光谱用于研究颜料组成的这种适应性变化对激发态动力学的影响。该复合物包含其他Chlb光谱形式-在约650 nm和658 nm处吸收-与高植物LHCII相比,缺少最红的Chl a形式。与植物LHCII相似,Chls之间的能量转移发生在从不到100 fs(主要是从Chlb到Chla)到几皮秒(主要是在Chla池之间)的时间尺度上。但是,存在长寿的,弱耦合的Chlb和Chla状态会导致皮质双歧杆菌LHCII中的激子平衡变慢。该发现证明了在增强的蓝绿光吸收与激发迁移时间之间的权衡。但是,自适应更改不会导致Photosystem II的总体光化学效率显着下降。这些结果表明,LHCII是一个强大的适应性系统,其光谱特性可以根据环境进行调整以实现最佳的光收集。Chls之间的能量传输发生在从小于100 fs(主要是从Chlb到Chla)到几皮秒(主要是在Chla池之间)的时间尺度上。但是,存在长寿的,弱耦合的Chlb和Chla状态会导致皮质双歧杆菌LHCII中的激子平衡变慢。该发现证明了在增强的蓝绿光吸收与激发迁移时间之间的权衡。但是,自适应更改不会导致Photosystem II的总体光化学效率显着下降。这些结果表明,LHCII是一个强大的适应性系统,其光谱特性可以根据环境进行调整以实现最佳的光收集。Chls之间的能量传递发生在从小于100 fs(主要是从Chlb到Chla)到几皮秒(主要是在Chla池之间)的时间尺度上。但是,存在长寿的,弱耦合的Chlb和Chla状态会导致皮质双歧杆菌LHCII中的激子平衡变慢。该发现证明了蓝绿色光的吸收增强与激发迁移时间之间的平衡。但是,自适应更改不会导致Photosystem II的总体光化学效率显着下降。这些结果表明,LHCII是一个强大的适应性系统,其光谱特性可以根据环境进行调整,以实现最佳的光收集。皮质类。该发现证明了在增强的蓝绿光吸收与激发迁移时间之间的权衡。但是,自适应更改不会导致Photosystem II的总体光化学效率显着下降。这些结果表明,LHCII是一个强大的适应性系统,其光谱特性可以根据环境进行调整以实现最佳的光收集。皮质类。该发现证明了在增强的蓝绿光吸收与激发迁移时间之间的权衡。但是,自适应更改不会导致Photosystem II的总体光化学效率显着下降。这些结果表明,LHCII是一个强大的适应性系统,其光谱特性可以根据环境进行调整以实现最佳的光收集。
更新日期:2020-04-20
down
wechat
bug