当前位置: X-MOL 学术Part. Part. Syst. Charact. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multifunctional Sulfur‐Hyperdoped Silicon Nanoparticles with Engineered Mid‐Infrared Sulfur‐Impurity and Free‐Carrier Absorption
Particle & Particle Systems Characterization ( IF 2.7 ) Pub Date : 2020-03-20 , DOI: 10.1002/ppsc.202000010
Alena A. Nastulyavichus 1 , Irina N. Saraeva 1, 2 , Andrey A. Rudenko 1 , Roman A. Khmelnitskii 1 , Alexander L. Shakhmin 3 , Demid A. Kirilenko 4, 5 , Pavel N. Brunkov 4, 5 , Nikolay N. Melnik 1 , Nikita A. Smirnov 1 , Andrey A. Ionin 1 , Sergey I. Kudryashov 1, 2, 4
Affiliation  

Si nanoparticles (NPs), which are innovative promising light‐harvesting components of thin‐film solar cells and key‐enabling biocompatible theranostic elements of infrared‐laser and radiofrequency hyperthermia‐based therapies of cancer cells in tumors and metastases, are significantly advanced in their near/mid‐infrared band‐to‐band and free‐carrier absorption via donor sulfur‐hyperdoping during high‐throughput facile femtosecond‐laser ablative production in liquid carbon disulfide. High‐resolution transmission electron microscopy and Raman microscopy reveal their mixed nanocrystalline/amorphous structure, enabling the extraordinary sulfur content of a few atomic percents and very minor surface oxidation/carbonization characterized by energy‐dispersive X‐ray spectroscopy and X‐ray photoelectron spectroscopy. A 200‐nm thick layer of the nanoparticles exhibits near−mid‐infrared absorbance, comparable to that of the initial 380‐micron thick n‐doped Si wafer (phosphor‐dopant concentration ≈1015 cm−3), with the corresponding extinction coefficient for the hyperdoped NPs being 4–7 orders higher over the broadband spectral range of 1–25 micrometers. Such ultimate, but potentially tunable mid‐IR structured, multi‐band absorption of various sulfur‐impurity clusters and smooth free‐carrier absorption are break through advances in mid‐infrared (mid‐IR) laser and radiofrequency (RF) hyperthermia‐based therapies, as envisioned in the RF‐heating tests, and in fabrication of higher‐efficiency thin‐film and bulk photovoltaic devices with ultra‐broad (UV−mid‐IR) spectral response.

中文翻译:

具有工程中红外硫杂质和自由载流子吸收功能的多功能硫超掺杂硅纳米颗粒

Si纳米颗粒(NPs)是薄膜太阳能电池的创新有前途的光收集组件,并且是基于红外激光和射频热疗的肿瘤和转移性癌细胞治疗的关键使能性生物相容性治疗物质,在其纳米技术上取得了显着进步在液态二硫化碳中高通量飞秒激光烧蚀生产中,通过供体硫超掺杂进行近/中红外波段间和自由载流子吸收。高分辨率透射电子显微镜和拉曼显微镜揭示了它们混合的纳米晶体/无定形结构,能够以能量分散型X射线光谱和X射线光电子能谱为特征,使硫含量达到几个原子百分数,而且表面氧化/碳化作用极小。15 cm -3),在1-25微米的宽带光谱范围内,高掺杂NP的相应消光系数高4-7个数量级。各种硫杂质簇的这种最终但潜在可调谐的中红外结构多频带吸收和平滑的自由载流子吸收突破了基于中红外(mid-IR)激光和基于射频(RF)热疗的疗法的进展如RF加热测试以及具有超宽(UV-mid-IR)光谱响应的高效率薄膜和大容量光伏设备的制造中所设想的那样。
更新日期:2020-03-20
down
wechat
bug