当前位置: X-MOL 学术Integr. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Human brain microvascular endothelial cell pairs model tissue-level blood-brain barrier function.
Integrative Biology ( IF 1.5 ) Pub Date : 2020-04-14 , DOI: 10.1093/intbio/zyaa005
Blakely B O'Connor 1 , Thomas Grevesse 1 , John F Zimmerman 1 , Herdeline Ann M Ardoña 1 , Jorge A Jimenez 1 , Dimitrios Bitounis 2 , Philip Demokritou 2 , Kevin Kit Parker 1
Affiliation  

The blood-brain barrier plays a critical role in delivering oxygen and nutrients to the brain while preventing the transport of neurotoxins. Predicting the ability of potential therapeutics and neurotoxicants to modulate brain barrier function remains a challenge due to limited spatial resolution and geometric constraints offered by existing in vitro models. Using soft lithography to control the shape of microvascular tissues, we predicted blood-brain barrier permeability states based on structural changes in human brain endothelial cells. We quantified morphological differences in nuclear, junction, and cytoskeletal proteins that influence, or indicate, barrier permeability. We established a correlation between brain endothelial cell pair structure and permeability by treating cell pairs and tissues with known cytoskeleton-modulating agents, including a Rho activator, a Rho inhibitor, and a cyclic adenosine monophosphate analog. Using this approach, we found that high-permeability cell pairs showed nuclear elongation, loss of junction proteins, and increased actin stress fiber formation, which were indicative of increased contractility. We measured traction forces generated by high- and low-permeability pairs, finding that higher stress at the intercellular junction contributes to barrier leakiness. We further tested the applicability of this platform to predict modulations in brain endothelial permeability by exposing cell pairs to engineered nanomaterials, including gold, silver-silica, and cerium oxide nanoparticles, thereby uncovering new insights into the mechanism of nanoparticle-mediated barrier disruption. Overall, we confirm the utility of this platform to assess the multiscale impact of pharmacological agents or environmental toxicants on blood-brain barrier integrity.

中文翻译:


人脑微血管内皮细胞对模拟组织水平的血脑屏障功能。



血脑屏障在向大脑输送氧气和营养物质同时防止神经毒素的运输方面发挥着关键作用。由于现有体外模型提供的空间分辨率和几何限制有限,预测潜在疗法和神经毒剂调节脑屏障功能的能力仍然是一个挑战。使用软光刻来控制微血管组织的形状,我们根据人脑内皮细胞的结构变化预测血脑屏障的通透性状态。我们量化了影响或指示屏障通透性的核蛋白、连接蛋白和细胞骨架蛋白的形态差异。我们通过使用已知的细胞骨架调节剂(包括 Rho 激活剂、Rho 抑制剂和环磷酸腺苷类似物)处理细胞对和组织,建立了脑内皮细胞对结构和通透性之间的相关性。使用这种方法,我们发现高渗透性细胞对表现出核伸长、连接蛋白丢失和肌动蛋白应力纤维形成增加,这表明收缩性增加。我们测量了高渗透性和低渗透性对产生的牵引力,发现细胞间连接处的较高应力会导致屏障渗漏。我们进一步测试了该平台的适用性,通过将细胞对暴露于工程纳米材料(包括金、银二氧化硅和氧化铈纳米颗粒)来预测脑内皮通透性的调节,从而揭示纳米颗粒介导的屏障破坏机制的新见解。 总体而言,我们确认该平台可用于评估药物或环境毒物对血脑屏障完整性的多尺度影响。
更新日期:2020-04-17
down
wechat
bug