当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deformation behavior and amorphization in icosahedral boron-rich ceramics
Progress in Materials Science ( IF 33.6 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.pmatsci.2020.100664
Amnaya Awasthi , Ghatu Subhash

Abstract Among hard materials, icosahedra-based boron-rich ceramics are only second to diamond-based structures. This class of ceramics possesses lower density, higher thermal and chemical resistance, and can be easily mass-produced compared to diamond-based materials. The present article reviews contemporary knowledge of atomic structures, mechanical properties and deformation mechanisms of a range of boron-rich ceramics, including different allotropes of boron, polymorphs of boron carbide, and futuristic materials such as boron suboxide, “BAM” materials and their derivatives. Despite their high-hardness and strength, many icosahedral boron-rich ceramics are prone to a unique deleterious deformation mechanism under high pressure, called “amorphization”, which causes loss of strength and catastrophic failure. This article presents a critique of established approaches that explain the amorphization phenomena. Main highlights include the demystification of Raman spectrum of amorphized boron carbide using a multi-scale atomistic computational approach and atomistic investigation into connection between high-pressure deformation, such as those in shock conditions and rise in temperature up to melting. We finally probe avenues for enhancing performance of these ceramics well beyond contemporary thresholds, by proposing research pathways using rigorous computational material informatics.

中文翻译:

二十面体富硼陶瓷的变形行为和非晶化

摘要 在硬质材料中,二十面体基富硼陶瓷仅次于金刚石基结构。与金刚石基材料相比,此类陶瓷具有较低的密度、较高的耐热性和耐化学性,并且易于批量生产。本文回顾了一系列富硼陶瓷的原子结构、机械性能和变形机制的当代知识,包括硼的不同同素异形体、碳化硼的多晶型物以及未来材料如低氧化硼、“BAM”材料及其衍生物. 尽管具有高硬度和强度,许多二十面体富硼陶瓷在高压下容易发生一种独特的有害变形机制,称为“非晶化”,导致强度损失和灾难性失效。本文对解释非晶化现象的既定方法提出了批评。主要亮点包括使用多尺度原子计算方法揭开非晶碳化硼拉曼光谱的神秘面纱,以及对高压变形之间联系的原子研究,例如冲击条件下的变形和温度升高直至熔化。通过提出使用严格的计算材料信息学的研究途径,我们最终探索了将这些陶瓷的性能提高到远远超出当代阈值的途径。主要亮点包括使用多尺度原子计算方法揭开非晶碳化硼拉曼光谱的神秘面纱,以及对高压变形之间联系的原子研究,例如冲击条件下的变形和温度升高直至熔化。通过提出使用严格的计算材料信息学的研究途径,我们最终探索了将这些陶瓷的性能提高到远远超出当代阈值的途径。主要亮点包括使用多尺度原子计算方法揭开非晶碳化硼拉曼光谱的神秘面纱,以及对高压变形之间联系的原子研究,例如冲击条件下的变形和温度升高直至熔化。通过提出使用严格的计算材料信息学的研究途径,我们最终探索了将这些陶瓷的性能提高到远远超出当代阈值的途径。
更新日期:2020-07-01
down
wechat
bug