当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthesis of ternary spinel MCo2O4 (M = Mn, Zn)/BiVO4 photoelectrodes for photolectrochemical water splitting
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2020-03-21 , DOI: 10.1016/j.cej.2020.124838
Dongbo Xu , Teng Xia , Huimin Xu , Weiqiang Fan , Weidong Shi

Bismuth vanadate (BiVO4) as a promising photoelectrode has been received an increasing attention for photoelectrochemical (PEC) water splitting. However, the severe surface charge recombination of BiVO4 still limited the PEC water splitting efficiency. Herein, a simple process is developed for preparing ternary spinel MCo2O4 (M = Mn, Zn) nanoparticles on the surface of BiVO4 photoelectrode as an efficient co-catalyst and constructed p-n junction to suppress the surface charge recombination. The as-prepared best MnCo2O4/BiVO4 and ZnCo2O4/BiVO4 photoelectrodes have exhibited a remarkable photocurrent density of 2.8 mA/cm2 and 2.2 mA/cm2 at 1.23 V versus the reversible hydrogen electrode (RHE) under AM 1.5 G illumination, which is about 3.5 and 2.7 times than the bare BiVO4 photoelectrode, respectively. The deposition of MCo2O4 (M = Mn, Zn) co-catalyst has yielded a large cathodic shift in the onset potential of BiVO4. The PEC studies suggest that the MCo2O4 (M = Mn, Zn) co-catalyst could boost the photogenerated holes transference and enhance the charge separation efficiency in the semiconductor-electrolyte interface. The prominent PEC activity shows that the MCo2O4/BiVO4 photoelectrodes could be used in solar water splitting.



中文翻译:

光电化学水分解用三元尖晶石MCo2O4(M = Mn,Zn)/ BiVO4光电极的合成

钒酸铋(BiVO 4)作为一种有前途的光电极,在光电化学(PEC)水分解中受到越来越多的关注。但是,BiVO 4的剧烈表面电荷复合仍然限制了PEC的水分解效率。在本文中,开发了一种简单的方法以在BiVO 4光电极表面上制备三元尖晶石MCo 2 O 4(M = Mn,Zn)纳米粒子作为有效的助催化剂,并构建了pn结以抑制表面电荷复合。最佳制备的MnCo 2 O 4 / BiVO 4和ZnCo 2 O 4 / BiVO 4与在AM 1.5 G光照下的可逆氢电极(RHE)相比,光电极在1.23 V下表现出了显着的光电流密度,分别为2.8 mA / cm 2和2.2 mA / cm 2,是裸BiVO 4光电电极的3.5倍和2.7倍,分别。MCo 2 O 4(M = Mn,Zn)助催化剂的沉积在BiVO 4的起始电势上产生了很大的阴极位移。PEC研究表明,MCo 2 O 4(M = Mn,Zn)助催化剂可以促进光生空穴的转移,并提高半导体-电解质界面中的电荷分离效率。杰出的PEC活动表明,MCo2 O 4 / BiVO 4光电电极可用于太阳能水分解。

更新日期:2020-03-21
down
wechat
bug