当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Supramolecular preorganization effect to access single cobalt sites for enhanced photocatalytic hydrogen evolution and nitrogen fixation
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2020-03-20 , DOI: 10.1016/j.cej.2020.124822
Wenyao Zhang , Yongsheng Fu , Qiong Peng , Qiushi Yao , Xin Wang , Aiping Yu , Zhongwei Chen

Ever-increased investigation has been focused on designing photocatalysts comprising intimately interfaced photo-absorbers and co-catalysts for promoting the separation of electron-hole pairs and surface redox reaction. Herein, we present a photocatalytic system in which the single-site-cobalt-atom is firmly trapped and stabilized into the frameworks of porous crimped graphitic carbon nitride (g-C3N4), proposing as advanced photocatalysts for solar-photon-driven hydrogen production and nitrogen fixation. A single molecular source of dicyandiamide was used to partly transformed and then in-situ preorganized into supermolecular precursor, which could coordinate with cobalt ions and manipulate the interactions under elevated temperature prior to the condensation to form atomically Co dispersed g-C3N4 materials. Theoretical evaluation and experimental validation identified that the chemical integration of single-site-cobalt-atom on g-C3N4 is critical in optimizing the electron and band structures and accelerating the interfacial charge transfer process. As a result, the as-obtained Co@g-C3N4 possesses an exceptional photocatalytic hydrogen production rate (2481 μmolh−1g−1, λ > 420 nm) and conspicuous nitrogen photofixation performances under visible-light irradiation. Such concerted catalysis attributes to the negative shift of the Fermi level in Co@g-C3N4 system deriving from the induced charge-transfer effect, which effectively gains the reducibility of electrons and creates more active sites for photocatalytic reactions.



中文翻译:

超分子预组织效应可访问单个钴位点,以增强光催化氢的生成和固氮作用

越来越多的研究集中在设计光催化剂上,该光催化剂包括紧密界面的光吸收剂和助催化剂,以促进电子-空穴对的分离和表面氧化还原反应。在这里,我们提出了一种光催化体系,其中单中心钴原子被牢固地捕获并稳定在多孔卷曲石墨碳氮化物(gC 3 N 4)的框架中,被提议作为用于太阳光子驱动制氢的先进光催化剂。和固氮。使用双分子双氰胺的单分子来源进行部分转化,然后原位转化预组织成超分子前体,可以与钴离子配位并在高温下控制相互作用,然后缩合形成原子分散的Co分散的gC 3 N 4材料。理论评估和实验验证表明,单中心钴原子在gC 3 N 4上的化学结合对于优化电子和能带结构以及加速界面电荷转移过程至关重要。结果,所获得的Co @ gC 3 N 4具有优异的光催化氢产生速率(2481μmolh -1 g -1,λ> 420 nm)和可见光照射下的显着氮固色性能。这种协同的催化作用归因于Co @ gC 3 N 4系统中费米能级的负迁移,这归因于感应的电荷转移效应,有效地获得了电子的可还原性并为光催化反应创建了更多的活性位点。

更新日期:2020-03-20
down
wechat
bug