当前位置: X-MOL 学术Appl. Phys. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bandgap engineering in CuO nanostructures: Dual-band, broadband, and UV-C photodetectors
Applied Physics Letters ( IF 3.5 ) Pub Date : 2020-03-16 , DOI: 10.1063/1.5128494
Akash Tripathi 1 , Tejendra Dixit 2 , Jitesh Agrawal 1 , Vipul Singh 1
Affiliation  

In this work, the bandgap of CuO (p-type semiconductor) has been engineered from an indirect bandgap of ∼1 eV to a direct bandgap of 4 eV just by tuning the nanostructure morphology and midgap defect states. The absorption in near-infrared (NIR) and visible regions is ordinarily suppressed by controlling the growth parameters. Considering the increasing scope and demand of varying spectral range (UV-C to NIR) photodetectors, the systematic variation of the available density of states (DOS) at a particular energy level in CuO nanostructures has been utilized to fabricate dual-band (250 nm and 900 nm), broadband (250 nm–900 nm), and UV-C (250 nm) photodetectors. The sensitivity and detectivity of the photodetector for broadband detectors were ∼103 and 2.24 × 1011 Jones for the wavelengths of 900 nm and 122 and 2.74 × 1010 Jones for 250 nm wavelength light, respectively. The UV-C detector showed a sensitivity of 1.8 and a detectivity of 4 × 109 Jones for 250 nm wavelength light. A plausible mechanism for the photoconduction has been proposed for explaining the device operation and the effect of variation in available DOS. The obtained photodetectors are the potential candidates for future optoelectronic applications.In this work, the bandgap of CuO (p-type semiconductor) has been engineered from an indirect bandgap of ∼1 eV to a direct bandgap of 4 eV just by tuning the nanostructure morphology and midgap defect states. The absorption in near-infrared (NIR) and visible regions is ordinarily suppressed by controlling the growth parameters. Considering the increasing scope and demand of varying spectral range (UV-C to NIR) photodetectors, the systematic variation of the available density of states (DOS) at a particular energy level in CuO nanostructures has been utilized to fabricate dual-band (250 nm and 900 nm), broadband (250 nm–900 nm), and UV-C (250 nm) photodetectors. The sensitivity and detectivity of the photodetector for broadband detectors were ∼103 and 2.24 × 1011 Jones for the wavelengths of 900 nm and 122 and 2.74 × 1010 Jones for 250 nm wavelength light, respectively. The UV-C detector showed a sensitivity of 1.8 and a detectivity of 4 × 109 Jones for 250 nm wavelength light. A plausible mechanism for the...

中文翻译:

CuO 纳米结构的带隙工程:双波段、宽带和 UV-C 光电探测器

在这项工作中,仅仅通过调整纳米结构形态和中隙缺陷状态,CuO(p 型半导体)的带隙已从~1 eV 的间接带隙设计为 4 eV 的直接带隙。通常通过控制生长参数来抑制近红外 (NIR) 和可见光区域的吸收。考虑到不同光谱范围(UV-C 到 NIR)光电探测器的范围和需求不断增加,CuO 纳米结构中特定能级的可用态密度 (DOS) 的系统变化已被用于制造双波段(250 nm和 900 nm)、宽带 (250 nm–900 nm) 和 UV-C (250 nm) 光电探测器。宽带探测器的光电探测器的灵敏度和探测率对于 900 nm 和 122 和 2 的波长分别为 ∼103 和 2.24 × 1011 Jones。250 nm 波长的光分别为 74 × 1010 Jones。UV-C 检测器对 250 nm 波长光的灵敏度为 1.8,检测率为 4 × 109 Jones。已经提出了一种合理的光电导机制来解释设备操作和可用 DOS 变化的影响。获得的光电探测器是未来光电应用的潜在候选者。在这项工作中,通过调整纳米结构形态,CuO(p 型半导体)的带隙已从~1 eV 的间接带隙设计为 4 eV 的直接带隙和中间隙缺陷状态。通常通过控制生长参数来抑制近红外 (NIR) 和可见光区域的吸收。考虑到不同光谱范围(UV-C 到 NIR)光电探测器的范围和需求不断增加,CuO 纳米结构中特定能级的可用态密度 (DOS) 的系统变化已被用于制造双波段(250 nm 和 900 nm)、宽带(250 nm–900 nm)和 UV-C( 250 nm) 光电探测器。宽带探测器的光电探测器的灵敏度和探测率对于 900 nm 的波长分别为 103 和 2.24 × 1011 Jones,对于 250 nm 波长的光分别为 122 和 2.74 × 1010 Jones。UV-C 检测器对 250 nm 波长光的灵敏度为 1.8,检测率为 4 × 109 Jones。一个合理的机制... 宽带探测器的光电探测器的灵敏度和探测率对于 900 nm 的波长分别为 103 和 2.24 × 1011 Jones,对于 250 nm 波长的光分别为 122 和 2.74 × 1010 Jones。UV-C 检测器对 250 nm 波长光的灵敏度为 1.8,检测率为 4 × 109 Jones。一个合理的机制... 宽带探测器的光电探测器的灵敏度和探测率对于 900 nm 的波长分别为 103 和 2.24 × 1011 Jones,对于 250 nm 波长的光分别为 122 和 2.74 × 1010 Jones。UV-C 检测器对 250 nm 波长光的灵敏度为 1.8,检测率为 4 × 109 Jones。一个合理的机制...
更新日期:2020-03-16
down
wechat
bug