当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphene-Supported Single Nickel Atom Catalyst for Highly Selective and Efficient Hydrogen Peroxide Production
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2020-04-01 , DOI: 10.1021/acsami.0c01278
Xiaozhe Song 1 , Ning Li 1 , Huan Zhang 1 , Li Wang 1 , Yanjun Yan 1 , Hui Wang 1 , Linyuan Wang 2 , Zhaoyong Bian 2
Affiliation  

Hydrogen peroxide (H2O2) production by electrocatalytic two-electron oxygen reduction shows promise as a replacement for energy-intensive anthraquinone oxidation or H2/O2 direct synthesis. Here, we report on graphene-supported Ni single-atom (SA) electrocatalysts, which are synthesized by a simple surfactant-free reduction process with enhanced electrocatalytic activity and stability. Unlike conventional Ni nanoparticles or alloy catalysts, the well-dispersed Ni-SA sites lack adjacent Ni atoms. This structure promotes H2O2 production by a two-electron oxygen reduction pathway under an alkaline condition (pH = 13). This catalyst exhibited enhanced H2O2 selectivity (>94%) with a considerable mass activity (2.11 A mgNi–1 at 0.60 V vs reversible hydrogen electrode), owing to the presence of oxygen functional groups and isolated Ni sites. Density functional theory calculations provide insights into the role of this catalyst in optimizing the two-electron oxygen reduction reaction pathway with high H2O2 selectivity. This work suggests a new method for controlling reaction pathways in atomically dispersed non-noble catalysts.

中文翻译:

石墨烯负载的单镍原子催化剂,可高效,高效地生产过氧化氢

通过电催化双电子氧还原生产过氧化氢(H 2 O 2)显示出有望替代高能耗的蒽醌氧化或H 2 / O 2直接合成。在这里,我们报告了石墨烯负载的Ni单原子(SA)电催化剂,它是通过简单的无表面活性剂还原工艺合成的,具有增强的电催化活性和稳定性。与常规的镍纳米粒子或合金催化剂不同,分散良好的Ni-SA位点缺少相邻的Ni原子。该结构在碱性条件(pH = 13)下通过双电子氧还原途径促进H 2 O 2的产生。该催化剂表现出增强的H 2 O2的选择性(> 94%),具有相当大的质量活度(在0.60 V下,相对于可逆氢电极为2.11 A mg Ni –1),这是由于存在氧官能团和孤立的Ni位点所致。密度泛函理论计算提供了对该催化剂在优化具有高H 2 O 2选择性的双电子氧还原反应路径中的作用的见解。这项工作提出了一种控制原子分散的非贵金属催化剂中反应路径的新方法。
更新日期:2020-04-01
down
wechat
bug