当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stimuli-Responsive Actuator Fabricated by Dynamic Asymmetric Femtosecond Bessel Beam for In Situ Particle and Cell Manipulation.
ACS Nano ( IF 15.8 ) Pub Date : 2020-03-20 , DOI: 10.1021/acsnano.0c00381
Rui Li 1 , Dongdong Jin 2 , Deng Pan 1 , Shengyun Ji 1 , Chen Xin 1 , Guangli Liu 1 , Shengying Fan 1 , Hao Wu 1 , Jiawen Li 1 , Yanlei Hu 1 , Dong Wu 1 , Li Zhang 2 , Jiaru Chu 1
Affiliation  

Microscale intelligent actuators capable of sensitive and accurate manipulation under external stimuli hold great promise in various fields including precision sensors and biomedical devices. Current microactuators, however, are often limited to a multiple-step fabrication process and multimaterials. Here, a pH-triggered soft microactuator (<100 μm) with simple structure, one-step fabrication process, and single material is proposed, which is composed of deformable hydrogel microstructures fabricated by an asymmetric femtosecond Bessel beam. To further explore the swelling–shrinking mechanism, the hydrogel porosity difference between expansion and contraction states is investigated. In addition, by introducing the dynamic holographic processing and splicing processing method, more complex responsive microstructures (S-shaped, C-shaped, and tortile chiral structures) are rapidly fabricated, which exhibit tremendous expected deformation characteristics. Finally, as a proof of concept, a pH-responsive microgripper is fabricated for in situ capturing polystyrene (PS) particles and neural stem cells rapidly. This flexible, designable, and one-step approach manufacturing of intelligent actuator provides a versatile platform for micro-objects manipulation and drug delivery.

中文翻译:

动态非对称飞秒贝塞尔光束制造的刺激响应执行器,用于原位粒子和细胞操纵。

能够在外部刺激下进行灵敏和精确操纵的微型智能执行器在包括精密传感器和生物医学设备在内的各个领域都具有广阔的前景。然而,当前的微致动器通常限于多步骤制造过程和多种材料。在此,提出了一种结构简单,一步制造工艺和单一材料的pH触发软微致动器(<100μm),该材料由非对称飞秒贝塞尔光束制造的可变形水凝胶微结构组成。为了进一步探索溶胀收缩机制,研究了膨胀和收缩状态之间的水凝胶孔隙率差异。此外,通过引入动态全息处理和拼接处理方法,可以形成更复杂的响应微结构(S形,C形,和手性手性结构被迅速制造出来,它们展现出巨大的预期变形特性。最后,作为概念证明,制造了一种pH响应型微抓钳,用于原位捕获聚苯乙烯(PS)颗粒和神经干细胞。这种灵活,可设计,一步一步的智能执行器制造方法为微对象操纵和药物输送提供了一个多功能平台。
更新日期:2020-03-20
down
wechat
bug