当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
Inexact Proximal-Point Penalty Methods for Constrained Non-Convex Optimization
arXiv - CS - Computational Complexity Pub Date : 2019-08-30 , DOI: arxiv-1908.11518
Qihang Lin; Runchao Ma; Yangyang Xu

In this paper, an inexact proximal-point penalty method is studied for constrained optimization problems, where the objective function is non-convex, and the constraint functions can also be non-convex. The proposed method approximately solves a sequence of subproblems, each of which is formed by adding to the original objective function a proximal term and quadratic penalty terms associated to the constraint functions. Under a weak-convexity assumption, each subproblem is made strongly convex and can be solved effectively to a required accuracy by an optimal gradient-based method. The computational complexity of the proposed method is analyzed separately for the cases of convex constraint and non-convex constraint. For both cases, the complexity results are established in terms of the number of proximal gradient steps needed to find an $\varepsilon$-stationary point. When the constraint functions are convex, we show a complexity result of $\tilde O(\varepsilon^{-5/2})$ to produce an $\varepsilon$-stationary point under the Slater's condition. When the constraint functions are non-convex, the complexity becomes $\tilde O(\varepsilon^{-3})$ if a non-singularity condition holds on constraints and otherwise $\tilde O(\varepsilon^{-4})$ if a feasible initial solution is available.
更新日期:2020-03-20

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug