当前位置: X-MOL 学术Oikos › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Uncovering the complete biodiversity structure in spatial networks: the example of riverine systems
Oikos ( IF 3.4 ) Pub Date : 2020-01-29 , DOI: 10.1111/oik.06806
Florian Altermatt 1, 2 , Chelsea J. Little 1, 2 , Elvira Mächler 1, 2 , Shaopeng Wang 3 , Xiaowei Zhang 4 , Rosetta C. Blackman 1, 2
Affiliation  

Uncovering biodiversity as an inherent feature of ecosystems and understanding its effects on ecosystem processes is one of the most central goals of ecology. Studying organisms’ occurrence and biodiversity patterns in natural ecosystems has spurred the discovery of foundational ecological rules, such as the species–area relationship, and is of general scientific interest. Recent global changes add relevance and urgency to understanding the occurrence and diversity of organisms, and their respective roles in ecosystem processes. While information on ecosystem properties and abiotic environmental conditions are now available at unprecedented, highly‐resolved spatial and temporal scales, the most fundamental variable – biodiversity itself – is still often studied in a local perspective, and generally not available at a wide taxonomic breadth, high temporal scale and spatial coverage. This is limiting the capacity and impact of ecology as a field of science. In this forum article, we propose that complete biodiversity assessments should be inclusive across taxonomic and functional groups, across space, and across time to better understand emergent properties, such as ecosystem functioning. We use riverine ecosystems as a case example because they are among the most biodiverse ecosystems worldwide, but are also highly threatened, such that an in‐depth understanding of these systems is critically needed. Furthermore, their inherent spatial structure requires a multiscale perspective and consideration of spatial autocorrelation structures commonly ignored in biodiversity–ecosystem functioning studies. We show how recent methodological advances in environmental DNA (eDNA) provide novel opportunities to uncover broad biodiversity and link it to ecosystem processes, with the potential to revolutionize ecology and biodiversity sciences. We then outline a roadmap for using this technique to assess biodiversity in a complete and inclusive manner. Our proposed approach will help to get an understanding of biodiversity and associated ecosystem processes at spatial scales relevant for landscape ecology and environmental managers.

中文翻译:

在空间网络中发现完整的生物多样性结构:河流系统的例子

发现生物多样性是生态系统的固有特征并了解其对生态系统过程的影响是生态学的最主要目标之一。研究自然生态系统中生物的发生和生物多样性模式刺激了基础生态规则的发现,例如物种与区域的关系,具有普遍的科学意义。最近的全球变化增加了了解生物的发生和多样性及其在生态系统过程中的各自作用的相关性和紧迫性。尽管现在可以前所未有的高度解析的时空尺度获取有关生态系统特性和非生物环境条件的信息,但最基本的变量(生物多样性本身)仍经常从本地角度进行研究,通常无法在广泛的分类学范围内获得,高时间尺度和空间覆盖。这限制了生态学作为科学领域的能力和影响。在本论坛文章中,我们建议完整的生物多样性评估应涵盖生物分类和功能组,空间和时间,以更好地了解新兴特性,例如生态系统功能。我们以河流生态系统为例,因为它们是世界上生物多样性最强的生态系统之一,但也受到了高度威胁,因此迫切需要对这些系统有深入的了解。此外,它们固有的空间结构需要多尺度的视角,并需要考虑在生物多样性-生态系统功能研究中通常被忽略的空间自相关结构。我们将展示环境DNA(eDNA)的最新方法学进步如何提供新的机会来发现广泛的生物多样性并将其与生态系统过程联系起来,并具有革新生态学和生物多样性科学的潜力。然后,我们概述了使用此技术以完整且包容的方式评估生物多样性的路线图。我们提出的方法将有助于在与景观生态学和环境管理者相关的空间尺度上理解生物多样性和相关的生态系统过程。
更新日期:2020-01-29
down
wechat
bug