当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular engineering strategies for fabricating efficient porphyrin-based dye-sensitized solar cells
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2020-03-19 , DOI: 10.1039/c9ee04200h
Kaiwen Zeng 1, 2, 3, 4, 5 , Zhangfa Tong 6, 7, 8, 9, 10 , Lin Ma 6, 7, 8, 9, 10 , Wei-Hong Zhu 1, 2, 3, 4, 5 , Wenjun Wu 1, 2, 3, 4, 5 , Yongshu Xie 1, 2, 3, 4, 5
Affiliation  

Dye-sensitized solar cells (DSSCs), as a cost effective and eco-friendly photovoltaic technology for utilizing solar energy, are promising in meeting the increasing demand of clean and renewable energy resources. Among various sensitizers, porphyrins are crucial candidates with the advantages of strong absorption in a wide spectral range, tunable photophysical and electrochemical properties, and long-lived excited states facilitating electron injection. After decades of development, the power conversion efficiencies of porphyrin-based DSSCs have exceeded 13%, showing the great potential of porphyrins in fabricating highly efficient DSSCs. This review summarizes effective molecular engineering strategies for optimizing porphyrin sensitizers as well as intermolecular engineering of coadsorption and cosensitization systems, with the aim to provide further insight into the molecular structure–photovoltaic performance correlations and an outlook on possible exploration directions in the future for achieving DSSCs with high efficiencies, long-term stability and low cost feasible for practical applications. In addition, the recent advances of porphyrin-based organic solar cells (OSCs) are briefly introduced considering similar design strategies employed for developing porphyrin dyes for DSSCs and active materials for OSCs.

中文翻译:

分子工程策略,用于制备高效的基于卟啉的染料敏化太阳能电池

染料敏化太阳能电池(DSSC)作为一种低成本,环保的利用太阳能的光伏技术,有望满足清洁和可再生能源资源日益增长的需求。在各种敏化剂中,卟啉是至关重要的候选物,其优点是在宽光谱范围内具有强吸收性,可调节的光物理和电化学特性以及促进电子注入的长寿命激发态。经过数十年的发展,基于卟啉的DSSC的功率转换效率已超过13%,这表明卟啉在制造高效DSSC方面具有巨大的潜力。这篇综述总结了用于优化卟啉敏化剂以及共吸附和共敏化系统的分子间工程的有效分子工程策略,目的是进一步了解分子结构与光伏性能之间的相关性,并展望未来为实现高效率,长期稳定性和低成本而在实际应用中可行的DSSC的可能的勘探方向。此外,简要介绍了基于卟啉的有机太阳能电池(OSC)的最新进展,并考虑了用于开发DSSC的卟啉染料和OSC活性材料的类似设计策略。
更新日期:2020-03-19
down
wechat
bug