当前位置: X-MOL 学术IEEE Trans. Hum. Mach. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Determination of the Gain for a Walking Speed Amplifying Belt Using Brain Activity
IEEE Transactions on Human-Machine Systems ( IF 3.5 ) Pub Date : 2020-04-01 , DOI: 10.1109/thms.2019.2961974
Satoshi Miura , Yuki Yokoo , Yasutaka Nakashima , Yoshikazu Ogaya , Misato Nihei , Takeshi Ando , Yo Kobayashi , Masakatsu G. Fujie

Movement/walking assistance devices have the great advantage of supporting quality of life for the elderly in an aging society. To strike a balance between efficiency of movement and employment of the elderly user's own body, we developed a smart mobility system called Tread-walk, which is controlled by the user walking on a treadmill and amplifies the user's walking speed. Since the user's walking speed is different from the speed at which the Tread-walk moves, users experience a mismatch between their visual optical flow and somatic sense. In this article, we validate the feasibility of an amplifying gain decision method that analyzes user brain activity. To control Tread-walk, the visual sense is integrated with somatosensation in the parietal area of the brain and controlled in the medial prefrontal cortex. Therefore, first, we measure the parietal area when the participants walk while looking at their virtual optical flow. Second, we measure the medical prefrontal cortex when the participants control Tread-walk 2. These experiments are carried out for a variety of speed amplifying gains. We find that the brain activates significantly at amplification gain K = 1.1–1.7 in the virtual optical flow experiment and K = 1.5–2.0 in the Tread-walk experiment; this brain activation represents the amplification gain at which the visual and somatosensory senses seem to receive similar input. In conclusion, the brain would activate the most significantly at the most appropriate amplification gain.

中文翻译:

使用大脑活动确定步行速度放大带的增益

运动/步行辅助设备在支持老龄化社会中老年人的生活质量方面具有巨大优势。为了在运动效率和老年人自身身体的使用之间取得平衡,我们开发了一种名为 Tread-walk 的智能移动系统,该系统由用户在跑步机上行走控制,并放大用户的步行速度。由于用户的步行速度与 Tread-walk 移动的速度不同,用户会体验到视觉光流和体感不匹配。在本文中,我们验证了一种分析用户大脑活动的放大增益决策方法的可行性。为了控制踏步,视觉与大脑顶叶区域的躯体感觉相结合,并在内侧前额叶皮层进行控制。因此,首先,当参与者一边走路一边看着他们的虚拟光流时,我们测量了顶叶区域。其次,当参与者控制 Tread-walk 2 时,我们测量医学前额叶皮层。 这些实验是为各种速度放大增益而进行的。我们发现,在虚拟光流实验中,放大增益 K = 1.1–1.7 和 Tread-walk 实验中的 K = 1.5–2.0 时,大脑会显着激活;这种大脑激活代表了视觉和体感似乎接收到类似输入的放大增益。总之,大脑将在最合适的放大增益下最显着地激活。这些实验是针对各种速度放大增益进行的。我们发现,在虚拟光流实验中,放大增益 K = 1.1–1.7 和 Tread-walk 实验中的 K = 1.5–2.0 时,大脑会显着激活;这种大脑激活代表了视觉和体感似乎接收到类似输入的放大增益。总之,大脑将在最合适的放大增益下最显着地激活。这些实验是针对各种速度放大增益进行的。我们发现,在虚拟光流实验中,放大增益 K = 1.1–1.7 和 Tread-walk 实验中的 K = 1.5–2.0 时,大脑会显着激活;这种大脑激活代表了视觉和体感似乎接收到类似输入的放大增益。总之,大脑将在最合适的放大增益下最显着地激活。
更新日期:2020-04-01
down
wechat
bug