当前位置: X-MOL 学术IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sea Ice Transition Detection Using Incoherent Integration and Deconvolution
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing ( IF 4.7 ) Pub Date : 2020-01-01 , DOI: 10.1109/jstars.2019.2943510
Benjamin J. Southwell , Andrew G. Dempster

Currently, reflectometry-based sea ice detection methods rely on observables extracted from delay-Doppler maps (DDM)s, which are sensitive to ice in the specular zone. Due to the size of the glistening zone, the transition from open seas to sea ice in the specular zone can take up to 10 s for satellite platforms and no methods exist that can process this. In this article, using DDMs collected by TechDemoSat-1, we demonstrate that this transition is comprised of a response that is fixed in the spatial domain, at the ice edge, and moving in the delay-Doppler domain. This is the first observation of persistent nonspecular coherent reflections from sea ice. The delay-Doppler trajectory of the ice response is shown to correspond with a point that is located on the ambiguity free line. Furthermore, the response is point-like as it suffers from delay and Doppler walk suggesting that it originates from a small spatial footprint, i.e., the first (few) Fresnel zone(s). Exploiting these facts, we then propose a technique that integrates the ice response in the spatial domain after preprocessing. This results in the edges of the ice sheet being emphasized as all of the power received during the transition phase maps to the edge of the sheet. We also propose to compensate for the delay-Doppler walk during preprocessing by modifying Woodward's ambiguity function when deconvolution is performed.

中文翻译:

使用非相干积分和解卷积的海冰过渡检测

目前,基于反射计的海冰检测方法依赖于从延迟多普勒图 (DDM) 中提取的观测值,这些观测值对镜面区域中的冰很敏感。由于闪光区的大小,卫星平台从公海到镜面区海冰的过渡可能需要长达 10 秒的时间,并且没有任何方法可以处理这一点。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 在本文中,我们使用 TechDemoSat-1 收集的 DDM 证明了这种转换由固定在空间域、冰缘和延迟多普勒域中的响应组成。这是首次观察到来自海冰的持续非镜面相干反射。冰响应的延迟多普勒轨迹显示为对应于位于无模糊线上的点。此外,响应是点状的,因为它受到延迟和多普勒步行的影响,这表明它起源于一个小的空间足迹,即第一个(几个)菲涅耳区。利用这些事实,我们提出了一种在预处理后将冰响应整合到空间域中的技术。这导致冰盖的边缘被强调,因为在过渡阶段接收到的所有功率都映射到冰盖的边缘。我们还建议通过在执行反卷积时修改伍德沃德的模糊函数来补偿预处理期间的延迟多普勒游走。这导致冰盖的边缘被强调,因为在过渡阶段接收到的所有功率都映射到冰盖的边缘。我们还建议通过在执行反卷积时修改伍德沃德的模糊函数来补偿预处理期间的延迟多普勒游走。这导致冰盖的边缘被强调,因为在过渡阶段接收到的所有功率都映射到冰盖的边缘。我们还建议通过在执行反卷积时修改伍德沃德的模糊函数来补偿预处理期间的延迟多普勒游走。
更新日期:2020-01-01
down
wechat
bug