当前位置: X-MOL 学术IEEE Robot. Autom. Mag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Compact, Lightweight Robotic Ankle-Foot Prosthesis: Featuring a Powered Polycentric Design
IEEE Robotics & Automation Magazine ( IF 5.4 ) Pub Date : 2020-01-20 , DOI: 10.1109/mra.2019.2955740
Lukas Gabert 1 , Sarah Hood 1 , Minh Tran 1 , Marco Cempini 2 , Tommaso Lenzi 1
Affiliation  

Robotic ankle-foot prostheses aim to improve the mobility of individuals with belowknee amputations by closely imitating the biomechanical function of the missing biological limb. To accomplish this goal, they must provide biomechanically accurate torque during ambulation. In addition, they must satisfy further requirements such as build height, range of motion (ROM), and weight. These requirements are critical for determining the potential number of users, range of activities that can be performed, and clinical outcomes. Previous studies have proposed addressing this challenge through the use of advanced actuation systems with series and parallel elastic actuators, clutchable leverages, and pneumatic artificial muscles. These ad vanced actuation systems have shown improved mechanical and electrical efficiency compared to conventional servo motors, making powered ankle prostheses possible. However, the improved efficiency comes at the expense of a tall build height, reduced ROM, and significant increase in weight, thus limiting the clinical viability of currently available powered prostheses.

中文翻译:

紧凑、轻便的机器人踝足假肢:采用动力多中心设计

机器人踝足假肢旨在通过密切模仿缺失生物肢体的生物力学功能来提高膝下截肢者的活动能力。为了实现这一目标,他们必须在行走过程中提供生物力学上准确的扭矩。此外,它们还必须满足进一步的要求,例如构建高度、运动范围 (ROM) 和重量。这些要求对于确定潜在用户数量、可以执行的活动范围和临床结果至关重要。先前的研究建议通过使用具有串联和并联弹性致动器、可抓握杠杆和气动人造肌肉的先进致动系统来解决这一挑战。与传统伺服电机相比,这些先进的驱动系统已显示出更高的机械和电气效率,使动力踝关节假肢成为可能。然而,效率的提高是以较高的构建高度、减小的活动范围和显着增加的重量为代价的,从而限制了当前可用的动力假肢的临床可行性。
更新日期:2020-04-22
down
wechat
bug