当前位置: X-MOL 学术IEEE Sens. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controlling of Vibrations in Micro-Cantilever Beam using a Layer of Active Electrorheological Fluid Support
IEEE Sensors Journal ( IF 4.3 ) Pub Date : 2020-04-15 , DOI: 10.1109/jsen.2019.2961380
Sylvester S. Djokoto , Egidijus Dragasius , Vytautas Jurenas , Martin Agelin-Chaab

The development of vibration control with smart fluids within flexible structures has been of significant interest in recent times. Although much research has been done on structures with embedded electrorheological fluids (ERF) and magnetorheological fluids (MRF), there has been a little investigation into localizing smart fluids under micro-structures. Research into the damping of micro-structures using ERF is very limited. The research in this article presented a comprehensive study into the controllability of the vibration characteristics of a micro-piezoelectric transducer with ERF support. This structure is made from piezoelectric material with a layer of ERF localized at the tip micro-cantilever beam (MCB). The structural behaviour of the MCB-ERF is alternated by applying an external electric field to activate the ERF. The MCB-ERF was tested under different electric field configurations ranging from 0kV/mm-2kV/mm. The effects of the activation of the ERF were outlined based on the results obtained. The increase in the frequency of MCB as the applied electric field to the ERF increased at 12.4 % experimentally with an electric field of 2kV/mm. The simulation and the analytical results, on the other hand, showed an increase in the frequency of the MCB from 16.2% and 13.46% respectively. The results demonstrated that the stiffness and damping structural characteristics of the MCB are controlled. This confirms the vibration controlling capabilities of MCB-ERF as structural elements.

中文翻译:

使用一层活性电流变流体支撑控制微悬臂梁的振动

近来,柔性结构内智能流体振动控制的发展引起了人们的极大兴趣。尽管已经对嵌入电流变流体 (ERF) 和磁流变流体 (MRF) 的结构进行了大量研究,但对在微结构下定位智能流体的研究却很少。使用 ERF 对微结构阻尼的研究非常有限。本文的研究对带有 ERF 支持的微压电换能器的振动特性的可控性进行了全面的研究。该结构由压电材料制成,在尖端微悬臂梁 (MCB) 处有一层 ERF。MCB-ERF 的结构行为通过施加外部电场来激活 ERF 来改变。MCB-ERF 在 0kV/mm-2kV/mm 的不同电场配置下进行了测试。基于获得的结果概述了 ERF 激活的影响。随着施加到 ERF 的电场,MCB 频率的增加在实验上增加了 12.4%,电场为 2kV/mm。另一方面,模拟和分析结果显示 MCB 的频率分别从 16.2% 和 13.46% 增加。结果表明,MCB 的刚度和阻尼结构特性是可控的。这证实了 MCB-ERF 作为结构元件的振动控制能力。随着施加到 ERF 的电场,MCB 频率的增加在实验上增加了 12.4%,电场为 2kV/mm。另一方面,模拟和分析结果显示 MCB 的频率分别从 16.2% 和 13.46% 增加。结果表明,MCB 的刚度和阻尼结构特性是可控的。这证实了 MCB-ERF 作为结构元件的振动控制能力。随着施加到 ERF 的电场,MCB 频率的增加在实验上增加了 12.4%,电场为 2kV/mm。另一方面,模拟和分析结果显示 MCB 的频率分别从 16.2% 和 13.46% 增加。结果表明,MCB 的刚度和阻尼结构特性是可控的。这证实了 MCB-ERF 作为结构元件的振动控制能力。结果表明,MCB 的刚度和阻尼结构特性是可控的。这证实了 MCB-ERF 作为结构元件的振动控制能力。结果表明,MCB 的刚度和阻尼结构特性是可控的。这证实了 MCB-ERF 作为结构元件的振动控制能力。
更新日期:2020-04-15
down
wechat
bug