当前位置: X-MOL 学术Int. J. Adv. Manuf. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Real-time monitoring of immobilized oxide defects on bead surface in welding of high-strength galvanized steel
The International Journal of Advanced Manufacturing Technology ( IF 2.9 ) Pub Date : 2020-03-20 , DOI: 10.1007/s00170-020-05070-x
Young Cheol Jeong , Seung Jun Lee , Tae Won Park , Hong Kyu Kim , Young Tae Cho

Abstract

Welding is widely used for joining steel components in the automobile industry. With the use of high-quality materials, welding defects began to become increasingly complex. Immobilized oxide is one of the recent complex defects. Immobilized oxide defects generated in gas metal arc welding (GMAW) of high-strength steel and high-strength galvanized steel result in unpainted part on the surface of welding beads. Thus, it is necessary to be eliminated by using grinding and peening. However, it is difficult to find where oxides generate and how oxides generate in order to eliminate it. Few studies have explored the mechanism of immobilized oxide formation in other fields so far. In this study, the generation patterns of oxide defects were confirmed. Further, an oxide defect monitoring system for GMAW was developed by using an infrared camera and image processing equipment. The chemical properties of the immobilized oxide were verified by performing energy dispersive spectroscopy (EDS). The oxide appeared to be brighter in the infrared image, and then, image processing was conducted to determine the boundary of oxide defects. The processed images were laid over the original images, and the oxide defect area was displayed on the monitoring panel. Patterns of oxide defect generation were confirmed when it was combined with the following molten pool area moving in the opposite direction of the welding direction in our results. The developed monitoring system can be easily applied to the automatic welding process in the automobile industry.



中文翻译:

实时监测高强度镀锌钢板焊缝表面固定的氧化物缺陷

摘要

焊接在汽车工业中广泛用于连接钢部件。随着高质量材料的使用,焊接缺陷开始变得越来越复杂。固定氧化物是最近的复杂缺陷之一。在高强度钢和高强度镀锌钢的气体金属电弧焊(GMAW)中产生的固定化氧化物缺陷会导致焊珠表面未上漆的部分。因此,有必要通过研磨和喷丸消除。然而,很难找到氧化物在何处产生以及如何产生氧化物以消除它。迄今为止,很少有研究探索固定化氧化物形成的机理。在这项研究中,确认了氧化物缺陷的产生方式。进一步,通过使用红外热像仪和图像处理设备开发了用于GMAW的氧化物缺陷监测系统。通过执行能量色散光谱法(EDS)验证了固定氧化物的化学性质。氧化物在红外图像中显得更亮,然后进行图像处理以确定氧化物缺陷的边界。将处理后的图像放置在原始图像上,并将氧化物缺陷区域显示在监视面板上。当我们将其与随后沿熔接方向相反方向移动的熔池区域结合使用时,可以确定氧化物缺陷产生的方式。研发的监控系统可以轻松应用于汽车行业的自动焊接过程。通过执行能量色散光谱法(EDS)验证了固定氧化物的化学性质。氧化物在红外图像中显得更亮,然后进行图像处理以确定氧化物缺陷的边界。将处理后的图像放置在原始图像上,并将氧化物缺陷区域显示在监视面板上。当我们将其与随后沿熔接方向相反方向移动的熔池区域结合使用时,可以确定氧化物缺陷产生的方式。研发的监控系统可以轻松应用于汽车行业的自动焊接过程。通过执行能量色散光谱法(EDS)验证了固定氧化物的化学性质。氧化物在红外图像中显得更亮,然后进行图像处理以确定氧化物缺陷的边界。将处理后的图像放置在原始图像上,并将氧化物缺陷区域显示在监视面板上。当我们将其与随后沿熔接方向相反方向移动的熔池区域结合使用时,可以确定氧化物缺陷产生的方式。所开发的监控系统可轻松应用于汽车行业的自动焊接过程。进行图像处理以确定氧化物缺陷的边界。将处理后的图像放置在原始图像上,并将氧化物缺陷区域显示在监视面板上。当我们将其与随后沿熔接方向相反方向移动的熔池区域结合使用时,可以确定氧化物缺陷产生的方式。研发的监控系统可以轻松应用于汽车行业的自动焊接过程。进行图像处理以确定氧化物缺陷的边界。将处理后的图像放置在原始图像上,并将氧化物缺陷区域显示在监视面板上。当我们将其与随后沿熔接方向相反方向移动的熔池区域结合使用时,可以确定氧化物缺陷产生的方式。所开发的监控系统可轻松应用于汽车行业的自动焊接过程。

更新日期:2020-03-20
down
wechat
bug