当前位置: X-MOL 学术Int. J. Fract. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Supergiant elasticity and fracture of 3D spirally wound $$\hbox {MoS}_{\mathbf{2}}$$
International Journal of Fracture ( IF 2.2 ) Pub Date : 2020-02-03 , DOI: 10.1007/s10704-020-00427-5
Jianyang Wu , Jianying He , Pilar Ariza , Michael Ortiz , Zhiliang Zhang

Recently experimentally synthesized three-dimensional (3D) MoS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoS}_{{2}}$$\end{document} spiral is a new kind of helical structure with technically robust properties. Among them, the mechanical properties of such appealing materials are indispensable but remain unexplored. Here, the stretching characteristics of 3D spirally wound MoS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoS}_{{2}}$$\end{document} as a new type of mechanical nanospring are explored by using large-scale molecular dynamic (MD) simulations. It is revealed that the MoS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoS}_{{2}}$$\end{document} spiral structures not only exhibit unique sawtooth-like tensile responses inaccessible from conventional springs, but also hold high stretching deformation capabilities. Surprisingly, there is a critical inner radius which induces a jump of elasticity but not in the tensile strength; below it yields elastic strain of less than 320%, while above which the elastic strain is over 1900%. The supergiant elasticity is primarily caused by the sliding–reorientation action, stepwise opening and elastic deformation of nanoribbons of MoS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoS}_{{2}}$$\end{document} spirals. Moreover, imposed strain energy is mainly absorbed by the inner edges of MoS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoS}_{{2}}$$\end{document} spirals, and MoS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoS}_{{2}}$$\end{document} spirals catastrophically fail at the corner of the inner hexagon-edge of buckled MoS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoS}_{{2}}$$\end{document} nanoribbons that are more stress-concentrated. This study provides important insights into facile design of MoS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoS}_{{2}}$$\end{document} spiral-based nanosprings with supergiant elongation capability for practical applications.

中文翻译:

3D 螺旋缠绕的超巨弹性和断裂 $$\hbox {MoS}_{\mathbf{2}}$$

最近实验合成的三维 (3D) MoS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage {upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoS}_{{2}}$$\end{document} 螺旋是一种新型螺旋结构,具有技术上强大的特性. 其中,这种吸引人的材料的机械性能是不可或缺的,但仍有待探索。这里,3D 螺旋缠绕 MoS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek 的拉伸特性} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoS}_{{2}}$$\end{document} 作为一种新型的机械纳米弹簧被使用大规模探索分子动力学 (MD) 模拟。据透露,MoS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \ setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoS}_{{2}}$$\end{document} 螺旋结构不仅表现出传统弹簧无法达到的独特锯齿状拉伸响应,而且还具有很高的拉伸变形能力。令人惊讶的是,有一个临界内半径会引起弹性跳跃,但不会引起拉伸强度的跳跃;低于它产生的弹性应变小于 320%,而高于它的弹性应变超过 1900%。超巨弹性主要是由 MoS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} 的纳米带的滑动重定向作用、逐步打开和弹性变形引起的\usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MoS}_{{2}}$$\end{document}螺旋。而且,
更新日期:2020-02-03
down
wechat
bug