当前位置: X-MOL 学术Cogn. Neurodyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Induction and propagation of transient synchronous activity in neural networks endowed with short-term plasticity
Cognitive Neurodynamics ( IF 3.1 ) Pub Date : 2020-03-17 , DOI: 10.1007/s11571-020-09578-6
Shengdun Wu 1 , Kang Zhou 1 , Yuping Ai 1 , Guanyu Zhou 1 , Dezhong Yao 1, 2 , Daqing Guo 1, 2
Affiliation  

Transient, task related synchronous activity within neural populations has been recognized as the substrate of temporal coding in the brain. The mechanisms underlying inducing and propagation of transient synchronous activity are still unknown, and we propose that short-term plasticity (STP) of neural circuits may serve as a supplemental mechanism therein. By computational modeling, we showed that short-term facilitation greatly increases the reactivation rate of population spikes and decreases the latency of response to reactivation stimuli in local recurrent neural networks. Meanwhile, the timing of population spike reactivation is controlled by the memory effect of STP, and it is mediated primarily by the facilitation time constant. Furthermore, we demonstrated that synaptic facilitation dramatically enhances synchrony propagation in feedforward neural networks and that response timing mediated by synaptic facilitation offers a scheme for information routing. In addition, we verified that synaptic strengthening of intralayer or interlayer coupling enhances synchrony propagation, and we verified that other factors such as the delay of synaptic transmission and the mode of synaptic connectivity are also involved in regulating synchronous activity propagation. Overall, our results highlight the functional role of STP in regulating the inducing and propagation of transient synchronous activity, and they may inspire testable hypotheses for future experimental studies.



中文翻译:

具有短期可塑性的神经网络中瞬态同步活动的诱导和传播

神经群体中瞬时的、与任务相关的同步活动已被认为是大脑中时间编码的基础。瞬态同步活动的诱导和传播机制仍然未知,我们提出神经回路的短期可塑性(STP)可以作为其中的补充机制。通过计算建模,我们发现短期促进极大地增加了种群峰值的再激活率,并降低了局部递归神经网络中对再激活刺激的响应延迟。同时,种群峰值再激活的时间由STP的记忆效应控制,主要由促进时间常数介导。此外,我们证明了突触促进显着增强了前馈神经网络中的同步传播,并且突触促进介导的响应时间为信息路由提供了一种方案。此外,我们验证了层内或层间耦合的突触增强增强了同步传播,我们验证了其他因素,如突触传输延迟和突触连接模式也参与调节同步活动传播。总体而言,我们的结果突出了 STP 在调节瞬态同步活动的诱导和传播中的功能作用,它们可能会激发未来实验研究的可检验假设。此外,我们验证了层内或层间耦合的突触增强增强了同步传播,我们验证了其他因素,如突触传输延迟和突触连接模式也参与调节同步活动传播。总体而言,我们的结果突出了 STP 在调节瞬态同步活动的诱导和传播中的功能作用,它们可能会激发未来实验研究的可检验假设。此外,我们验证了层内或层间耦合的突触增强增强了同步传播,我们验证了其他因素,如突触传输延迟和突触连接模式也参与调节同步活动传播。总体而言,我们的结果突出了 STP 在调节瞬态同步活动的诱导和传播中的功能作用,它们可能会激发未来实验研究的可检验假设。

更新日期:2020-04-20
down
wechat
bug