当前位置: X-MOL 学术Micromachines › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Biomimetic Fish Fin-Like Robot Based on Textile Reinforced Silicone
Micromachines ( IF 3.0 ) Pub Date : 2020-03-12 , DOI: 10.3390/mi11030298
Sascha Pfeil , Konrad Katzer , Anas Kanan , Johannes Mersch , Martina Zimmermann , Michael Kaliske , Gerald Gerlach

The concept of merging pre-processed textile materials with tailored mechanical properties into soft matrices is so far rarely used in the field of soft robotics. The herein presented work takes the advantages of textile materials in elastomer matrices to another level by integrating a material with highly anisotropic bending properties. A pre-fabricated textile material consisting of oriented carbon fibers is used as a stiff component to precisely control the mechanical behavior of the robotic setup. The presented robotic concept uses a multi-layer stack for the robot’s body and dielectric elastomer actuators (DEAs) on both outer sides of it. The bending motion of the whole structure results from the combination of its mechanically adjusted properties and the force generation of the DEAs. We present an antagonistic switching setup for the DEAs that leads to deflections to both sides of the robot, following a biomimetic principle. To investigate the bending behavior of the robot, we show a simulation model utilizing electromechanical coupling to estimate the quasi-static deflection of the structure. Based on this model, a statement about the bending behavior of the structure in general is made, leading to an expected maximum deflection of 10 mm at the end of the fin for a static activation. Furthermore, we present an electromechanical network model to evaluate the frequency dependent behavior of the robot’s movement, predicting a resonance frequency of 6.385 Hz for the dynamic switching case. Both models in combination lead to a prediction about the acting behavior of the robot. These theoretical predictions are underpinned by dynamic performance measurements in air for different switching frequencies of the DEAs, leading to a maximum deflection of 9.3 mm located at the end of the actuators. The herein presented work places special focus on the mechanical resonance frequency of the robotic setup with regard to maximum deflections.

中文翻译:

基于纺织增强有机硅的仿生鱼鳍式机器人

迄今为止,在软机器人领域中很少使用将具有定制机械性能的预处理纺织品材料合并到软基质中的概念。本文提出的工作通过整合具有高度各向异性的弯曲特性的材料,将弹性体基质中的纺织材料的优势提高到了另一个层次。由定向碳纤维组成的预制纺织材料用作刚性组件,以精确控制机器人装置的机械性能。提出的机器人概念将多层堆栈用于机器人的身体,并在机器人的两个外侧使用介电弹性体致动器(DEA)。整个结构的弯曲运动是由其机械调整后的性能和DEA的力产生共同导致的。我们遵循仿生原理,为DEA提供了一种对抗性切换设置,该设置会导致向机器人两侧偏转。为了研究机器人的弯曲行为,我们展示了一个利用机电耦合来估计结构的准静态挠度的仿真模型。基于此模型,通常会对该结构的弯曲行为做出说明,从而导致在鳍片的端部进行静态激活时,预期的最大挠度为10 mm。此外,我们提出了一个机电网络模型来评估机器人运动的频率相关行为,并预测动态切换情况下的共振频率为6.385 Hz。两种模型的结合导致对机器人的动作行为的预测。这些理论预测得到了DEA不同开关频率在空气中动态性能测量的支持,从而导致位于执行器末端的最大挠度为9.3 mm。本文介绍的工作特别关注机器人装置在最大挠度方面的机械共振频率。
更新日期:2020-03-20
down
wechat
bug