当前位置: X-MOL 学术Stat. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-level Monte Carlo methods for the approximation of invariant measures of stochastic differential equations
Statistics and Computing ( IF 1.6 ) Pub Date : 2019-09-10 , DOI: 10.1007/s11222-019-09890-0
Michael B. Giles , Mateusz B. Majka , Lukasz Szpruch , Sebastian J. Vollmer , Konstantinos C. Zygalakis

We develop a framework that allows the use of the multi-level Monte Carlo (MLMC) methodology (Giles in Acta Numer. 24:259–328, 2015. https://doi.org/10.1017/S096249291500001X) to calculate expectations with respect to the invariant measure of an ergodic SDE. In that context, we study the (over-damped) Langevin equations with a strongly concave potential. We show that when appropriate contracting couplings for the numerical integrators are available, one can obtain a uniform-in-time estimate of the MLMC variance in contrast to the majority of the results in the MLMC literature. As a consequence, a root mean square error of \(\mathcal {O}(\varepsilon )\) is achieved with \(\mathcal {O}(\varepsilon ^{-2})\) complexity on par with Markov Chain Monte Carlo (MCMC) methods, which, however, can be computationally intensive when applied to large datasets. Finally, we present a multi-level version of the recently introduced stochastic gradient Langevin dynamics method (Welling and Teh, in: Proceedings of the 28th ICML, 2011) built for large datasets applications. We show that this is the first stochastic gradient MCMC method with complexity \(\mathcal {O}(\varepsilon ^{-2}|\log {\varepsilon }|^{3})\), in contrast to the complexity \(\mathcal {O}(\varepsilon ^{-3})\) of currently available methods. Numerical experiments confirm our theoretical findings.

中文翻译:

随机微分方程不变测度的多级蒙特卡罗方法

我们开发了一个框架,该框架允许使用多级蒙特卡洛(MLMC)方法(Giles in Acta Numer。24:259-328,2015. https://doi.org/10.1017/S096249291500001X)来计算期望值遍历SDE的不变度量。在这种情况下,我们研究具有强凹势的(过度阻尼的)Langevin方程。我们表明,当有适当的用于数字积分器的收缩耦合时,与MLMC文献中的大多数结果相比,人们可以获得MLMC方差的及时估计。结果,通过\(\ mathcal {O}(\ varepsilon ^ {-2})\)达到\(\ mathcal {O}(\ varepsilon)\)的均方根误差。复杂度与Markov Chain Monte Carlo(MCMC)方法相当,但是将其应用于大型数据集时可能需要大量计算。最后,我们为大型数据集应用程序介绍了最近引入的随机梯度Langevin动力学方法的多层次版本(Welling和Teh,于:第28 ICML会议论文集,2011年)。我们证明这是第一个具有复杂度\(\ mathcal {O}(\ varepsilon ^ {-2} | \ log {\ varepsilon} | ^ {3})\)的随机梯度MCMC方法,与复杂度\ (\ mathcal {O}(\ varepsilon ^ {-3})\)当前可用的方法。数值实验证实了我们的理论发现。
更新日期:2019-09-10
down
wechat
bug