当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The genetic architecture of the human cerebral cortex
Science ( IF 44.7 ) Pub Date : 2020-03-19 , DOI: 10.1126/science.aay6690
Katrina L. Grasby 1 , Neda Jahanshad 2 , Jodie N. Painter 1 , Lucía Colodro-Conde 1, 3, 4, 5 , Janita Bralten 6, 7 , Derrek P. Hibar 2, 8 , Penelope A. Lind 1, 4, 9 , Fabrizio Pizzagalli 2 , Christopher R. K. Ching 2, 10 , Mary Agnes B. McMahon 2 , Natalia Shatokhina 2 , Leo C. P. Zsembik 11 , Sophia I. Thomopoulos 2 , Alyssa H. Zhu 2 , Lachlan T. Strike 12 , Ingrid Agartz 13, 14, 15, 16 , Saud Alhusaini 17, 18 , Marcio A. A. Almeida 19 , Dag Alnæs 13, 14 , Inge K. Amlien 20 , Micael Andersson 21, 22 , Tyler Ard 23 , Nicola J. Armstrong 24 , Allison Ashley-Koch 25 , Joshua R. Atkins 26, 27 , Manon Bernard 28 , Rachel M. Brouwer 29 , Elizabeth E. L. Buimer 29 , Robin Bülow 30 , Christian Bürger 31 , Dara M. Cannon 32 , Mallar Chakravarty 33, 34 , Qiang Chen 35 , Joshua W. Cheung 2 , Baptiste Couvy-Duchesne 12, 36, 37 , Anders M. Dale 38, 39 , Shareefa Dalvie 40 , Tânia K. de Araujo 41, 42 , Greig I. de Zubicaray 43 , Sonja M. C. de Zwarte 29 , Anouk den Braber 44, 45 , Nhat Trung Doan 13, 14 , Katharina Dohm 31 , Stefan Ehrlich 46 , Hannah-Ruth Engelbrecht 47 , Susanne Erk 48 , Chun Chieh Fan 49 , Iryna O. Fedko 44 , Sonya F. Foley 50 , Judith M. Ford 51 , Masaki Fukunaga 52 , Melanie E. Garrett 25 , Tian Ge 53, 54 , Sudheer Giddaluru 55 , Aaron L. Goldman 35 , Melissa J. Green 56, 57 , Nynke A. Groenewold 40 , Dominik Grotegerd 31 , Tiril P. Gurholt 13, 14, 15 , Boris A. Gutman 2, 58 , Narelle K. Hansell 12 , Mathew A. Harris 59, 60 , Marc B. Harrison 2 , Courtney C. Haswell 61, 62 , Michael Hauser 25 , Stefan Herms 63, 64, 65 , Dirk J. Heslenfeld 66 , New Fei Ho 67 , David Hoehn 68 , Per Hoffmann 63, 64, 69 , Laurena Holleran 70 , Martine Hoogman 6, 7 , Jouke-Jan Hottenga 44 , Masashi Ikeda 71 , Deborah Janowitz 72 , Iris E. Jansen 73, 74 , Tianye Jia 75, 76, 77 , Christiane Jockwitz 78, 79, 80 , Ryota Kanai 81, 82, 83 , Sherif Karama 33, 84, 85 , Dalia Kasperaviciute 86, 87 , Tobias Kaufmann 13, 14 , Sinead Kelly 88, 89 , Masataka Kikuchi 90 , Marieke Klein 6, 7, 29 , Michael Knapp 91 , Annchen R. Knodt 92 , Bernd Krämer 93, 94 , Max Lam 67, 95 , Thomas M. Lancaster 50, 96 , Phil H. Lee 53, 97 , Tristram A. Lett 48 , Lindsay B. Lewis 85, 98 , Iscia Lopes-Cendes 41, 42 , Michelle Luciano 99, 100 , Fabio Macciardi 101 , Andre F. Marquand 7, 102 , Samuel R. Mathias 103, 104 , Tracy R. Melzer 105, 106, 107 , Yuri Milaneschi 108 , Nazanin Mirza-Schreiber 68, 109 , Jose C. V. Moreira 42, 110 , Thomas W. Mühleisen 63, 78, 111 , Bertram Müller-Myhsok 68, 112, 113 , Pablo Najt 32 , Soichiro Nakahara 101, 114 , Kwangsik Nho 115 , Loes M. Olde Loohuis 116 , Dimitri Papadopoulos Orfanos 117 , John F. Pearson 118, 119 , Toni L. Pitcher 105, 106, 107 , Benno Pütz 68 , Yann Quidé 56, 57 , Anjanibhargavi Ragothaman 2 , Faisal M. Rashid 2 , William R. Reay 26, 27 , Ronny Redlich 31 , Céline S. Reinbold 20, 63, 64 , Jonathan Repple 31 , Geneviève Richard 13, 14, 120, 121 , Brandalyn C. Riedel 2, 115 , Shannon L. Risacher 115 , Cristiane S. Rocha 41, 42 , Nina Roth Mota 6, 7, 122 , Lauren Salminen 2 , Arvin Saremi 2 , Andrew J. Saykin 115, 123 , Fenja Schlag 124 , Lianne Schmaal 125, 126, 127 , Peter R. Schofield 57, 128 , Rodrigo Secolin 41, 42 , Chin Yang Shapland 124 , Li Shen 129 , Jean Shin 28, 130 , Elena Shumskaya 6, 7, 131 , Ida E. Sønderby 13, 14 , Emma Sprooten 7 , Katherine E. Tansey 96 , Alexander Teumer 132 , Anbupalam Thalamuthu 133 , Diana Tordesillas-Gutiérrez 134, 135 , Jessica A. Turner 136, 137 , Anne Uhlmann 40, 138 , Costanza Ludovica Vallerga 36 , Dennis van der Meer 139, 140 , Marjolein M. J. van Donkelaar 141 , Liza van Eijk 3, 12 , Theo G. M. van Erp 101 , Neeltje E. M. van Haren 29, 142 , Daan van Rooij 7, 102 , Marie-José van Tol 143 , Jan H. Veldink 144 , Ellen Verhoef 124 , Esther Walton 136, 145, 146 , Mingyuan Wang 67 , Yunpeng Wang 13, 14 , Joanna M. Wardlaw 59, 100, 147 , Wei Wen 133 , Lars T. Westlye 13, 14, 120 , Christopher D. Whelan 2, 17 , Stephanie H. Witt 148 , Katharina Wittfeld 72, 149 , Christiane Wolf 150 , Thomas Wolfers 6 , Jing Qin Wu 26 , Clarissa L. Yasuda 42, 151 , Dario Zaremba 31 , Zuo Zhang 152 , Marcel P. Zwiers 7, 102, 131 , Eric Artiges 153 , Amelia A. Assareh 133 , Rosa Ayesa-Arriola 135, 154 , Aysenil Belger 61, 155 , Christine L. Brandt 13, 14 , Gregory G. Brown 156, 157 , Sven Cichon 63, 64, 78 , Joanne E. Curran 19 , Gareth E. Davies 158 , Franziska Degenhardt 69 , Michelle F. Dennis 62 , Bruno Dietsche 159 , Srdjan Djurovic 160, 161 , Colin P. Doherty 162, 163, 164 , Ryan Espiritu 165 , Daniel Garijo 165 , Yolanda Gil 165 , Penny A. Gowland 166 , Robert C. Green 167, 168, 169 , Alexander N. Häusler 170, 171 , Walter Heindel 172 , Beng-Choon Ho 173 , Wolfgang U. Hoffmann 132, 149 , Florian Holsboer 68, 174 , Georg Homuth 175 , Norbert Hosten 176 , Clifford R. Jack 177 , MiHyun Jang 165 , Andreas Jansen 159, 178 , Nathan A. Kimbrel 62, 179 , Knut Kolskår 13, 14, 120, 121 , Sanne Koops 29 , Axel Krug 159 , Kelvin O. Lim 180 , Jurjen J. Luykx 29, 181, 182 , Daniel H. Mathalon 183, 184 , Karen A. Mather 57, 133 , Venkata S. Mattay 35, 185, 186 , Sarah Matthews 145 , Jaqueline Mayoral Van Son 135, 154 , Sarah C. McEwen 187, 188 , Ingrid Melle 13, 14 , Derek W. Morris 32 , Bryon A. Mueller 180 , Matthias Nauck 189, 190 , Jan E. Nordvik 121 , Markus M. Nöthen 69 , Daniel S. O’Leary 173 , Nils Opel 31 , Marie-Laure Paillère Martinot 153, 191 , G. Bruce Pike 192 , Adrian Preda 193 , Erin B. Quinlan 152 , Paul E. Rasser 27, 194, 195, 196 , Varun Ratnakar 165 , Simone Reppermund 133, 197 , Vidar M. Steen 161, 198 , Paul A. Tooney 26, 196 , Fábio R. Torres 41, 42 , Dick J. Veltman 108 , James T. Voyvodic 61 , Robert Whelan 199 , Tonya White 142, 200 , Hidenaga Yamamori 201 , Hieab H. H. Adams 202, 203, 204 , Joshua C. Bis 205 , Stephanie Debette 206, 207 , Charles Decarli 208 , Myriam Fornage 209 , Vilmundur Gudnason 210, 211 , Edith Hofer 212, 213 , M. Arfan Ikram 202 , Lenore Launer 214 , W. T. Longstreth 215 , Oscar L. Lopez 202, 216 , Bernard Mazoyer 217 , Thomas H. Mosley 218 , Gennady V. Roshchupkin 202, 203, 216 , Claudia L. Satizabal 219, 220, 221 , Reinhold Schmidt 212 , Sudha Seshadri 219, 221, 222 , Qiong Yang 223 , Marina K. M. Alvim 42, 151 , David Ames 224, 225 , Tim J. Anderson 105, 106, 107, 226 , Ole A. Andreassen 13, 14 , Alejandro Arias-Vasquez 6, 7, 122 , Mark E. Bastin 59, 100 , Bernhard T. Baune 31, 227, 228 , Jean C. Beckham 179, 229 , John Blangero 19 , Dorret I. Boomsma 44 , Henry Brodaty 133, 230 , Han G. Brunner 6, 7, 231 , Randy L. Buckner 232, 233, 234 , Jan K. Buitelaar 7, 102, 235 , Juan R. Bustillo 236 , Wiepke Cahn 237 , Murray J. Cairns 26, 27, 238 , Vince Calhoun 239 , Vaughan J. Carr 56, 57, 240 , Xavier Caseras 96 , Svenja Caspers 78, 80, 241 , Gianpiero L. Cavalleri 242, 243 , Fernando Cendes 42, 151 , Aiden Corvin 244 , Benedicto Crespo-Facorro 135, 154, 245 , John C. Dalrymple-Alford 106, 107, 246 , Udo Dannlowski 31 , Eco J. C. de Geus 44 , Ian J. Deary 99, 100 , Norman Delanty 17, 164 , Chantal Depondt 247 , Sylvane Desrivières 77, 152 , Gary Donohoe 70 , Thomas Espeseth 13, 120 , Guillén Fernández 7, 102 , Simon E. Fisher 7, 124 , Herta Flor 248 , Andreas J. Forstner 63, 64, 69, 249, 250 , Clyde Francks 7, 124 , Barbara Franke 6, 7, 122 , David C. Glahn 104, 251 , Randy L. Gollub 97, 233, 234 , Hans J. Grabe 72, 149 , Oliver Gruber 93 , Asta K. Håberg 252, 253 , Ahmad R. Hariri 92 , Catharina A. Hartman 254 , Ryota Hashimoto 201, 255, 256 , Andreas Heinz 257 , Frans A. Henskens 194, 258 , Manon H. J. Hillegers 142, 259 , Pieter J. Hoekstra 260 , Avram J. Holmes 233, 261 , L. Elliot Hong 262 , William D. Hopkins 263 , Hilleke E. Hulshoff Pol 29 , Terry L. Jernigan 39, 49, 156, 264 , Erik G. Jönsson 14, 16 , René S. Kahn 29, 265 , Martin A. Kennedy 119 , Tilo T. J. Kircher 159 , Peter Kochunov 262 , John B. J. Kwok 57, 128, 266 , Stephanie Le Hellard 161, 198 , Carmel M. Loughland 194, 267 , Nicholas G. Martin 37 , Jean-Luc Martinot 153 , Colm McDonald 32 , Katie L. McMahon 268 , Andreas Meyer-Lindenberg 269 , Patricia T. Michie 270 , Rajendra A. Morey 61, 62 , Bryan Mowry 12, 271 , Lars Nyberg 21, 22, 272 , Jaap Oosterlaan 273, 274, 275 , Roel A. Ophoff 116 , Christos Pantelis 227, 228, 276 , Tomas Paus 277, 278, 279 , Zdenka Pausova 28, 280 , Brenda W. J. H. Penninx 108 , Tinca J. C. Polderman 73 , Danielle Posthuma 73, 281 , Marcella Rietschel 148 , Joshua L. Roffman 233 , Laura M. Rowland 262 , Perminder S. Sachdev 133, 282 , Philipp G. Sämann 68 , Ulrich Schall 27, 196 , Gunter Schumann 75, 77, 152, 283, 284 , Rodney J. Scott 26, 285 , Kang Sim 286 , Sanjay M. Sisodiya 86, 287 , Jordan W. Smoller 53, 233, 288 , Iris E. Sommer 143, 259, 260, 289 , Beate St Pourcain 7, 124, 145 , Dan J. Stein 290, 291 , Arthur W. Toga 23 , Julian N. Trollor 133, 197 , Nic J. A. Van der Wee 292 , Dennis van ’t Ent 44 , Henry Völzke 132 , Henrik Walter 48 , Bernd Weber 170, 171 , Daniel R. Weinberger 35, 293 , Margaret J. Wright 12, 294 , Juan Zhou 295 , Jason L. Stein 11 , Paul M. Thompson 2 , Sarah E. Medland 1, 3, 9 , , , , , , ,
Affiliation  

Genetic determination of cortex structure The human cerebral cortex is important for cognition, and it is of interest to see how genetic variants affect its structure. Grasby et al. combined genetic data with brain magnetic resonance imaging from more than 50,000 people to generate a genome-wide analysis of how human genetic variation influences human cortical surface area and thickness. From this analysis, they identified variants associated with cortical structure, some of which affect signaling and gene expression. They observed overlap between genetic loci affecting cortical structure, brain development, and neuropsychiatric disease, and the correlation between these phenotypes is of interest for further study. Science, this issue p. eaay6690 Common genetic variation is associated with interindividual variation in the structure of the cortex of the human brain. INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function. Identifying genetic influences on human cortical structure. (A) Measurement of cortical surface area and thickness from MRI. (B) Genomic locations of common genetic variants that influence global and regional cortical structure. (C) Our results support the radial unit hypothesis that the expansion of cortical surface area is driven by proliferating neural progenitor cells. (D) Cortical surface area shows genetic correlation with psychiatric and cognitive traits. Error bars indicate SE. IMAGE CREDITS: (A) K. COURTNEY; (C) M. R. GLASS The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson’s disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.

中文翻译:


人类大脑皮层的遗传结构



皮质结构的遗传决定人类大脑皮层对于认知非常重要,了解遗传变异如何影响其结构很有意义。格拉斯比等人。将超过 50,000 人的遗传数据与脑部磁共振成像相结合,对人类遗传变异如何影响人类皮质表面积和厚度进行全基因组分析。通过这项分析,他们发现了与皮质结构相关的变异,其中一些影响信号传导和基因表达。他们观察到影响皮质结构、大脑发育和神经精神疾病的遗传位点之间的重叠,这些表型之间的相关性值得进一步研究。科学,本期第 14 页。 eaay6690 常见的遗传变异与人脑皮质结构的个体差异有关。简介 大脑皮层是我们复杂认知能力的基础。人类皮质表面积和厚度的变化与神经、心理和行为特征相关,并且可以通过磁共振成像(MRI)在体内测量。对模式生物的研究已经确定了影响皮质结构的基因,但对影响人类皮质结构的常见遗传变异知之甚少。基本原理为了在全球和区域水平上识别与人类皮质结构相关的遗传变异,我们对 60 个队列中 51,665 名个体的脑 MRI 数据进行了全基因组关联荟萃分析。我们分析了整个皮质和 34 个具有已知功能特化的皮质区域的表面积和平均厚度。 结果 我们在 33,992 名欧洲血统参与者的发现样本中确定了 306 个名义上全基因组显着位点 (P < 5 × 10−8) 与皮质结构相关。在可获得复制数据的 299 个位点中,241 个影响表面积和 14 个影响厚度的位点在复制后仍然显着,其中 199 个位点通过了多重检验校正(P < 8.3 × 10−10;187 个影响表面积和 12 个影响厚度) )。常见的遗传变异解释了总表面积变异的 34% (SE = 3%) 和平均厚度变异的 26% (SE = 2%);表面积和厚度呈现负遗传相关性(rG = -0.32,SE = 0.05,P = 6.5 × 10−12),这表明遗传影响对表面积和厚度具有相反的影响。生物信息学分析表明,总表面积受到遗传变异的影响,遗传变异改变了胎儿发育过程中神经祖细胞的基因调控活性。相比之下,平均厚度受到成人大脑样本中活跃调节元件的影响,这可能反映了胎儿中期发育后发生的过程,例如髓鞘形成、分支或修剪。当综合考虑时,这些结果支持径向单位假说,即不同的发育机制促进表面积扩张和厚度增加。为了确定对各个皮质区域的特定遗传影响,我们在区域分析中控制了全局测量(总表面积或平均厚度)。经过多次测试校正,我们确定了 175 个影响区域表面积的位点和 10 个影响区域厚度的位点。 影响区域表面积的基因座聚集在参与 Wnt 信号通路的基因附近,已知该通路会影响区域同一性。我们观察到总表面积与一般认知功能和教育程度之间存在显着的正向遗传相关性和双向因果关系的证据。我们发现总表面积与帕金森病之间存在额外的正向遗传相关性,但没有发现因果关系的证据。总表面积与失眠、注意力缺陷多动障碍、抑郁症状、重度抑郁症和神经质之间存在明显的负遗传相关性。结论 这项大规模的合作工作增强了我们对人类大脑皮层遗传结构及其区域模式的理解。皮质的高度多基因结构表明不同的基因参与特定皮质区域的发育。此外,我们发现证据表明,大脑结构是导致从遗传变异到一般认知功能差异的因果途径中的关键表型。识别遗传对人类皮质结构的影响。 (A) 通过 MRI 测量皮质表面积和厚度。 (B) 影响全球和区域皮质结构的常见遗传变异的基因组位置。 (C) 我们的结果支持径向单位假设,即皮质表面积的扩张是由增殖的神经祖细胞驱动的。 (D) 皮质表面积显示与精神和认知特征的遗传相关性。误差线表示SE。图片来源:(A) K. COURTNEY; (三)先生 大脑皮层是我们复杂认知能力的基础,但我们对影响人类皮层结构的特定基因位点知之甚少。为了识别影响皮质结构的遗传变异,我们对 51,665 名个体的脑磁共振成像数据进行了全基因组关联荟萃分析。我们分析了整个皮层和 34 个已知功能特化区域的表面积和平均厚度。我们鉴定了 199 个显着位点,并发现在产前皮质发育期间活跃的调节元件中影响总表面积的位点显着富集,支持径向单位假说。影响区域表面积的基因座聚集在 Wnt 信号通路中的基因附近,从而影响祖细胞扩张和区域同一性。皮质结构的变异与认知功能、帕金森病、失眠、抑郁、神经质和注意力缺陷多动障碍有遗传相关性。
更新日期:2020-03-19
down
wechat
bug