当前位置: X-MOL 学术Int. J. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling analysis of the effect of battery design on internal short circuit hazard in LiNi0.8Co0.1Mn0.1O2/SiOx-graphite lithium ion batteries
International Journal of Heat and Mass Transfer ( IF 5.0 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.ijheatmasstransfer.2020.119590
Chaoyue Liu , Hang Li , Xiangbang Kong , Jinbao Zhao

Abstract The internal short circuit is one of the most severe safety hazards to large format lithium ion batteries. This study aims to reproduce the internal short circuit hazard through experimental and numerical methods to give a better understanding of the effect of laminated battery design on thermal abuse tolerance. A thermal abuse reaction model based on LiNi0.8Co0.1Mn0.1O2/SiOx-graphite system is constructed with the assist of differential scanning calorimetry, and accelerating rate calorimetry experiments. The thermal runaway of the sample battery shows a five-stage process, and 11 chemical reactions and other heat sources are sorted out through modeling. Then the model is further simplified and coupled with the electrochemical-thermal model. The whole process of initiation of thermal runaway and heat progression afterward are reproduced. The model is extended to compare batteries with different laminated numbers and electrode sizes on the internal short circuit issue. Results show that different laminate design schemes will result in different hazard patterns. Larger layer number will delay the thermal runaway of the battery, but increase the seriousness of thermal hazard. Thermal tolerance ability can be adjusted without changing battery capacity. This work provides an applicable methodology for tuning layer number and electrode size for battery manufacture for safety concerns.

中文翻译:

电池设计对LiNi0.8Co0.1Mn0.1O2/SiOx-石墨锂离子电池内部短路危害影响的建模分析

摘要 内部短路是大规格锂离子电池最严重的安全隐患之一。本研究旨在通过实验和数值方法重现内部短路危险,以更好地了解叠层电池设计对热滥用耐受性的影响。借助差示扫描量热法和加速量热法实验,构建了基于LiNi0.8Co0.1Mn0.1O2/SiOx-石墨体系的热滥用反应模型。样品电池的热失控表现出五个阶段的过程,通过建模梳理出11个化学反应和其他热源。然后进一步简化模型并与电化学-热模型耦合。再现了热失控的开始和随后的热进展的整个过程。该模型被扩展到在内部短路问题上比较不同层数和电极尺寸的电池。结果表明,不同的层压板设计方案将导致不同的危险模式。较大的层数会延迟电池的热失控,但会增加热危害的严重性。可以在不改变电池容量的情况下调整耐热能力。这项工作提供了一种适用的方法来调整电池制造的层数和电极尺寸,以解决安全问题。但增加了热危害的严重性。可以在不改变电池容量的情况下调整耐热能力。这项工作提供了一种适用的方法来调整电池制造的层数和电极尺寸,以解决安全问题。但增加了热危害的严重性。可以在不改变电池容量的情况下调整耐热能力。这项工作提供了一种适用的方法来调整电池制造的层数和电极尺寸,以解决安全问题。
更新日期:2020-06-01
down
wechat
bug