当前位置: X-MOL 学术Int. J. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Estimating sensor number and spacing for inverse calculation of thermal boundary conditions using the conjugate gradient method
International Journal of Heat and Mass Transfer ( IF 5.0 ) Pub Date : 2020-06-01 , DOI: 10.1016/j.ijheatmasstransfer.2020.119638
T. Helmig , F. Al-Sibai , R. Kneer

Abstract The conjugate gradient method is a popular tool for solving inverse heat transfer problems which arise for example from the estimation of unknown thermal boundary conditions or temperature dependent material properties. Depending on the desired accuracy of the results, input data of numerous temperature sensors need to be considered. However, due to limited access and available space many systems offer only a few temperature measurement spots. Therefore, this paper focuses on the question how changes in the number of temperature measurements affect the inversely estimated boundary condition. This behavior is studied by two numerical test cases with different boundary conditions, thermal properties and geometries, investigating also varying resolutions of the boundary condition and the effect of measurement errors. The results of both test cases show, that for undisturbed measurement data as well as superimposed measurement errors, fewer temperature readings than unknowns are sufficient to accurately estimate the boundary condition. Also, after exceeding a threshold in sensor number, only little improvement of inverse estimated results can be observed in both test cases. To transfer these findings on further inverse heat transfer scenarios, the key heat conduction parameters are summarized in a characteristic parameter, the Fourier number. This number supports the estimation of necessary sensor count in future inverse investigations with varying thermal parameters, geometries and investigation time.

中文翻译:

使用共轭梯度法估算热边界条件逆计算的传感器数量和间距

摘要 共轭梯度法是求解逆传热问题的常用工具,这些问题例如由未知热边界条件或温度相关材料属性的估计引起。根据所需的结果精度,需要考虑众多温度传感器的输入数据。然而,由于访问和可用空间有限,许多系统仅提供几个温度测量点。因此,本文重点研究温度测量次数的变化如何影响逆估计边界条件的问题。这种行为是通过两个具有不同边界条件、热特性和几何形状的数值测试案例来研究的,还研究了边界条件的不同分辨率和测量误差的影响。两个测试案例的结果表明,对于未受干扰的测量数据以及叠加的测量误差,比未知数少的温度读数足以准确估计边界条件。此外,在超过传感器数量的阈值后,在两个测试案例中都只能观察到逆估计结果的改善很小。为了将这些发现转移到进一步的逆传热场景中,关键的热传导参数总结在一个特征参数中,即傅立叶数。该数字支持在未来具有不同热参数、几何形状和调查时间的逆向调查中估计必要的传感器数量。比未知数少的温度读数足以准确估计边界条件。此外,在超过传感器数量的阈值后,在两个测试案例中都只能观察到逆估计结果的改善很小。为了将这些发现转移到进一步的逆传热场景中,关键的热传导参数总结在一个特征参数中,即傅立叶数。该数字支持在未来具有不同热参数、几何形状和调查时间的逆向调查中估计必要的传感器数量。比未知数少的温度读数足以准确估计边界条件。此外,在超过传感器数量的阈值后,在两个测试案例中都只能观察到逆估计结果的改善很小。为了将这些发现转移到进一步的逆传热场景中,关键的热传导参数总结在一个特征参数中,即傅立叶数。该数字支持在未来具有不同热参数、几何形状和调查时间的逆向调查中估计必要的传感器数量。关键的热传导参数总结在一个特征参数中,即傅立叶数。该数字支持在未来具有不同热参数、几何形状和调查时间的逆向调查中估计必要的传感器数量。关键的热传导参数总结在一个特征参数中,即傅立叶数。该数字支持在未来具有不同热参数、几何形状和调查时间的逆向调查中估计必要的传感器数量。
更新日期:2020-06-01
down
wechat
bug