当前位置: X-MOL 学术J. Hazard. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphene oxide enhanced ozonation of 5-chloro-2-methyl-4-isothiazolin-3-one: Kinetics, degradation pathway, and toxicity.
Journal of Hazardous Materials ( IF 12.2 ) Pub Date : 2020-03-19 , DOI: 10.1016/j.jhazmat.2020.122563
Bei Ye 1 , Min-Yong Lee 2 , Wen-Long Wang 2 , Ang Li 3 , Zi-Ye Liu 4 , Qian-Yuan Wu 5 , Hong-Ying Hu 6
Affiliation  

Kathon is among the most common non-oxidative biocides, containing 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT) and methylisothiazolone (MIT) as the active ingredients. In our previous work, MIT was shown to be efficiently removed by ozonation. In this work, we found that ozonation didn't readily degrade CMIT. Rate constants [Formula: see text] and k·OH,CMIT, determined to be 6.43 L mol-1 s-1 and 7.8 × 109 L mol-1 s-1, indicated that hydroxyl radicals played a more important role than ozone molecule in the CMIT ozonation which was also proved by the significant inhibition (55.7 %) when adding t-butanol (TBA). Graphene oxide (GO) greatly enhanced the CMIT ozonation, and degradation efficiency raised from 15 % to 100 % after 10 min through the increased production of hydroxyl radical. Basic conditions benefited the CMIT degradation compared with acidic and neutral conditions by promoting ozone decomposition and hydroxyl radical generation, while high carbonate and humic acid concentrations had slight influence on the CMIT degradation. In spite of the complex water matrix, CMIT degradation by GO enhanced ozonation was applicable in reverse osmosis concentrate (ROC). Based on the identification of the inorganic and organic products, a possible CMIT degradation pathway was proposed. However, CMIT transformation products still showed toxicity to Photobacterium phosphoreum and Daphnia magna even after a longer ozonation time.

中文翻译:

氧化石墨烯增强了5-氯-2-甲基-4-异噻唑啉-3-酮的臭氧化反应:动力学,降解途径和毒性。

Kathon是最常见的非氧化性杀菌剂,其中包含5-氯-2-甲基-4-异噻唑啉-3-酮(CMIT)和甲基异噻唑酮(MIT)作为活性成分。在我们之前的工作中,已证明MIT可通过臭氧处理有效去除。在这项工作中,我们发现臭氧化并不会轻易降解CMIT。速率常数[公式:参见文字]和k·OH,CMIT,确定为6.43 L mol-1 s-1和7.8×109 L mol-1 s-1,表明羟基自由基比臭氧分子更重要加入叔丁醇(TBA)时,显着的抑制作用(55.7%)证明了CMIT的臭氧氧化作用。氧化石墨烯(GO)大大增强了CMIT的臭氧化作用,并且通过增加羟基自由基的产生,降解效率在10分钟后从15%提高到100%。与酸性和中性条件相比,碱性条件通过促进臭氧分解和羟基自由基的产生而使CMIT降解受益,而高碳酸盐和腐殖酸浓度对CMIT降解的影响很小。尽管存在复杂的水基质,但GO增强的臭氧化作用可将CMIT降解应用于反渗透浓缩液(ROC)。在鉴定无机和有机产物的基础上,提出了可能的CMIT降解途径。但是,即使经过更长的臭氧化时间,CMIT转化产物仍然对磷光细菌和大型蚤(Daphnia magna)表现出毒性。尽管存在复杂的水基质,但GO增强的臭氧化作用可将CMIT降解应用于反渗透浓缩液(ROC)。在鉴定无机和有机产物的基础上,提出了可能的CMIT降解途径。但是,即使经过更长的臭氧化时间,CMIT转化产物仍然对磷光细菌和大型蚤(Daphnia magna)表现出毒性。尽管存在复杂的水基质,但GO增强的臭氧化作用可将CMIT降解应用于反渗透浓缩液(ROC)。在鉴定无机和有机产物的基础上,提出了可能的CMIT降解途径。但是,即使经过更长的臭氧化时间,CMIT转化产物仍然对磷光细菌和大型蚤(Daphnia magna)表现出毒性。
更新日期:2020-03-20
down
wechat
bug