当前位置: X-MOL 学术Gas Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Estimation of reservoir porosity based on seismic inversion results using deep learning methods
Gas Science and Engineering ( IF 5.285 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.jngse.2020.103270
Runhai Feng

Abstract Location limitation of logged wells restricts the porosity estimation across the whole reservoir target, whereas seismic data are always collected to cover larger areas. In this paper, inversion results of seismic data are proposed as inputs for the prediction of reservoir porosity, even though the resolution is decreased, compared with well-log readings. The non-linear inversion scheme used is able to explore the complex relationship between rock properties and seismic data, which could potentially provide a higher quality of inversion results. As a regression process, Convolutional Neural Networks is then applied to estimate the reservoir porosity, based on the outputs of seismic inversion scheme. Incorporating 2D kernel filters which are convolved with input rock properties, the local information inside filters window is considered, and a better prediction performance is to be guaranteed. This is due to the fact that reservoir porosity is formed under depositional and digenetic rules, and it is intrinsically correlated with rock properties along the vertical direction in a short range. The designed workflow is applied to a real dataset from the Vienna Basin where compressibility and shear compliance are inverted and then used as inputs for the porosity estimation by Convolutional Neural Networks. For a comparison, the traditional Artificial Neural Networks is also trained and applied to the same dataset. It is concluded that the Convolutional Neural Networks can achieve a higher accuracy, and a 3D cube of reservoir porosity is obtained without location restriction of well logs.

中文翻译:

使用深度学习方法基于地震反演结果估算储层孔隙度

摘要 测井井的位置限制限制了整个储层目标的孔隙度估计,而地震数据总是被收集以覆盖更大的区域。在本文中,地震数据的反演结果被建议作为储层孔隙度预测的输入,尽管与测井读数相比分辨率有所降低。所使用的非线性反演方案能够探索岩石性质与地震数据之间的复杂关系,这可能会提供更高质量的反演结果。作为回归过程,基于地震反演方案的输出,然后应用卷积神经网络来估计储层孔隙度。结合与输入岩石属性卷积的 2D 内核过滤器,考虑过滤器窗口内的局部信息,并保证更好的预测性能。这是由于储层孔隙度是在沉积和成岩规律下形成的,并且在短程内与垂直方向的岩石性质具有内在相关性。设计的工作流程应用于来自维也纳盆地的真实数据集,其中压缩性和剪切柔量被反转,然后用作卷积神经网络孔隙度估计的输入。为了进行比较,传统的人工神经网络也经过训练并应用于相同的数据集。结论是卷积神经网络可以达到更高的精度,并且可以在不受测井位置限制的情况下获得储层孔隙度的3D立方体。这是由于储层孔隙度是在沉积和成岩规律下形成的,并且在短程内与垂直方向的岩石性质具有内在相关性。设计的工作流程应用于来自维也纳盆地的真实数据集,其中压缩性和剪切柔量被反转,然后用作卷积神经网络孔隙度估计的输入。为了进行比较,传统的人工神经网络也经过训练并应用于相同的数据集。结论是卷积神经网络可以达到更高的精度,并且可以在不受测井位置限制的情况下获得储层孔隙度的3D立方体。这是由于储层孔隙度是在沉积和成岩规律下形成的,并且在短程内与垂直方向的岩石性质具有内在相关性。设计的工作流程应用于来自维也纳盆地的真实数据集,其中压缩性和剪切柔量被反转,然后用作卷积神经网络孔隙度估计的输入。为了进行比较,传统的人工神经网络也经过训练并应用于相同的数据集。结论是卷积神经网络可以达到更高的精度,并且可以在不受测井位置限制的情况下获得储层孔隙度的3D立方体。设计的工作流程应用于来自维也纳盆地的真实数据集,其中压缩性和剪切柔量被反转,然后用作卷积神经网络孔隙度估计的输入。为了进行比较,传统的人工神经网络也经过训练并应用于相同的数据集。结论是卷积神经网络可以达到更高的精度,并且可以在不受测井位置限制的情况下获得储层孔隙度的3D立方体。设计的工作流程应用于来自维也纳盆地的真实数据集,其中压缩性和剪切柔量被反转,然后用作卷积神经网络孔隙度估计的输入。为了进行比较,传统的人工神经网络也经过训练并应用于相同的数据集。结论是卷积神经网络可以达到更高的精度,并且可以在不受测井位置限制的情况下获得储层孔隙度的3D立方体。
更新日期:2020-05-01
down
wechat
bug