当前位置: X-MOL 学术Agric. For. Meteorol. › 论文详情
Integrating a PhenoCam-derived vegetation index into a light use efficiency model to estimate daily gross primary production in a semi-arid grassland
Agricultural and Forest Meteorology ( IF 4.651 ) Pub Date : 2020-03-20 , DOI: 10.1016/j.agrformet.2020.107983
Hesong Wang; Gensuo Jia; Howard E. Epstein; Huichen Zhao; Anzhi Zhang

The accurate estimation of temporally-continuous gross primary production (GPP) is important for a mechanistic understanding of the global carbon budget, as well as the carbon exchange between land and atmosphere. Ground-based PhenoCams can provide near-surface observations of plant phenology with high temporal resolution and possess great potential for use in modeling the seasonal dynamics of GPP. However, due to the site-level empirical approaches for estimating the fraction of absorbed photosynthetically active radiation (fAPAR), a broad application of PhenoCams in GPP modeling has been restricted. In this study, the stage of vegetation phenology (Pscalar) is proposed, which is calculated from the excess green index (ExGI) derived from PhenoCam data. We integrate Pscalar with the enhanced vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to generate a daily time-series of the fAPAR (fAPARCAM), and then to estimate daily GPP (GPPCAM) with a light use efficiency model in a semi-arid grassland area from 2012 to 2014. Over the three continuous years, the daily fAPARCAM exhibited similar temporal behavior to the eddy covariance–measured GPP (GPPEC), and the overall determination coefficients (R2) were all > 0.81. GPPCAM agreed well with GPPEC, and these agreements were highly statistically significant (p < 0.01); R2 varied from 0.80 to 0.87, the relative error (RE) varied from -2.9% to 2.81%, and the root mean square error (RMSE) ranged from 0.83 to 0.98 gC/m2/d. GPPCAM was then resampled to 8-day temporal resolution (GPPCAM8d), and further evaluated by comparisons with MODIS GPP products (GPPMOD17) and vegetation photosynthesis model (VPM)–derived GPP (GPPVPM). Validation revealed that the variance explained by GPPCAM8d was still the greatest among these three GPP products. The RMSE and RE of GPPCAM8d were also lower than those of the other two GPP products. The explanatory power of predictors in GPP modeling was also explored; the fAPAR was found to be the most influential predictor, followed by photosynthetically active radiation (PAR). The contributions of the environmental stress indices of temperature and water (Tscalar and Wscalar, respectively) were less than that of PAR. These results highlight the potential for PhenoCam images in high temporal resolution GPP modeling. Our GPP modeling method will help reduce uncertainties by using PhenoCam images for monitoring the seasonal development of vegetation production.
更新日期:2020-03-20

 

全部期刊列表>>
材料学研究精选
Springer Nature Live 产业与创新线上学术论坛
胸腔和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
杨超勇
周一歌
华东师范大学
段炼
清华大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
福州大学
南京大学
王杰
左智伟
电子显微学
何凤
洛杉矶分校
吴杰
赵延川
试剂库存
天合科研
down
wechat
bug