当前位置: X-MOL 学术Environ. Model. Softw. › 论文详情
Model-based dense air pollution maps from sparse sensing in multi-source scenarios
Environmental Modelling & Software ( IF 4.552 ) Pub Date : 2020-03-19 , DOI: 10.1016/j.envsoft.2020.104701
Asaf Nebenzal; Barak Fishbain; Shai Kendler

A method for producing dense air pollution maps, based on any given air-pollution dispersion model, is presented. The scheme consists of two phases. At the first stage, sources' locations and emission rates, i.e., source term estimation, as a function of the model's parameter space are sought (“backward computation”). Then, the source term is used to generate the dense maps utilizing the same dispersion model (“forward computation”). The algorithm is model-invariant to the dispersion model, and thus is suitable for a wide range of applications according to the required accuracy and available resources. A simulation of an industrial area demonstrated that this method produced more accurate maps than current state-of-the-art techniques. The resulting dense air pollution map is thus a valuable tool for air pollution mitigation, regulation and research.
更新日期:2020-03-20

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug