当前位置: X-MOL 学术J. Comput. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis of artificial pressure equations in numerical simulations of a turbulent channel flow
Journal of Computational Physics ( IF 3.8 ) Pub Date : 2020-03-19 , DOI: 10.1016/j.jcp.2020.109407
Dorian Dupuy , Adrien Toutant , Françoise Bataille

Recently, several methods have been proposed to simulate incompressible fluid flows using an artificial pressure evolution equation, avoiding the resolution of a Poisson equation. These methods can be seen as various levels of approximation of the compressible Navier–Stokes equation in the low Mach number limit. We study the simulation of incompressible wall-bounded flows using several artificial pressure equations in order to determine the most relevant approximations. The simulations are stable using a finite difference method in a staggered grid system, even without diffusive term, and converge to the incompressible solution, both in direct numerical simulations and for coarser meshes, to be used in large-eddy simulations. A pressure equation with a convective and a diffusive term produces a more accurate solution than a compressible solver or methods involving more approximations. This suggests that it is near to an optimal level of approximation. The presence of a convective term in the pressure evolution equation is in particular crucial for the accuracy of the method. The rate of convergence of the solution in terms of artificial Mach number is studied numerically and validates the theoretical quadratic convergence rate. We demonstrate that this property can be used to accelerate the rate of convergence using an extrapolation in terms of artificial Mach number. Since the approach is based on an explicit and local system of equations, the numerical procedure is massively parallelisable and has low memory requirements.



中文翻译:

湍流通道数值模拟中的人工压力方程分析

最近,已经提出了几种方法来使用人工压力演化方程来模拟不可压缩的流体,从而避免了泊松方程的解析。这些方法可以看作是低马赫数极限中可压缩Navier-Stokes方程的各种近似水平。为了确定最相关的近似值,我们使用几个人工压力方程式研究了不可压缩壁面流动的模拟。即使在没有扩散项的情况下,在交错网格系统中使用有限差分方法进行的模拟也是稳定的,并且在直接数值模拟和较粗的网格中都收敛到不可压缩的解,以用于大涡模拟。具有对流项和扩散项的压力方程比可压缩求解器或涉及更多近似值的方法产生更准确的解决方案。这表明它接近最佳近似水平。在压力演化方程中对流项的存在对于方法的准确性特别重要。数值研究了基于人工马赫数的解的收敛速度,并验证了理论二次收敛速度。我们证明此属性可用于根据人工马赫数外推法来加快收敛速度​​。由于该方法基于显式且局部的方程组,因此数值过程可大规模并行化且内存需求较低。这表明它接近最佳近似水平。在压力演化方程中对流项的存在对于方法的准确性特别重要。数值研究了基于人工马赫数的解的收敛速度,并验证了理论二次收敛速度。我们证明此属性可用于根据人工马赫数外推法来加快收敛速度​​。由于该方法基于显式且局部的方程组,因此数值过程可大规模并行化且内存需求较低。这表明它接近最佳近似水平。在压力演化方程中对流项的存在对于方法的准确性特别重要。数值研究了基于人工马赫数的解的收敛速度,并验证了理论二次收敛速度。我们证明此属性可用于根据人工马赫数外推法来加快收敛速度​​。由于该方法基于显式且局部的方程组,因此数值过程可大规模并行化且内存需求较低。数值研究了基于人工马赫数的解的收敛速度,并验证了理论二次收敛速度。我们证明此属性可用于根据人工马赫数外推法来加快收敛速度​​。由于该方法基于显式且局部的方程组,因此数值过程可大规模并行化且内存需求较低。数值研究了基于人工马赫数的解的收敛速度,并验证了理论二次收敛速度。我们证明此属性可用于根据人工马赫数外推法来加快收敛速度​​。由于该方法基于显式且局部的方程组,因此数值过程可大规模并行化且内存需求较低。

更新日期:2020-03-20
down
wechat
bug