当前位置: X-MOL 学术Syst. Control Lett. › 论文详情
Approximating optimal finite horizon feedback by model predictive control
Systems & Control Letters ( IF 2.624 ) Pub Date : 2020-03-19 , DOI: 10.1016/j.sysconle.2020.104666
A.L. Dontchev; I.V. Kolmanovsky; M.I. Krastanov; V.M. Veliov; P.T. Vuong

We consider a finite-horizon continuous-time optimal control problem with nonlinear dynamics, an integral cost, control constraints and a time-varying parameter which represents perturbations or uncertainty. After discretizing the problem we employ a Model Predictive Control (MPC) approach by first solving the problem over the entire remaining time horizon and then applying the first element of the optimal discrete-time control sequence, as a constant in time function, to the continuous-time system over the sampling interval. Then the state at the end of the sampling interval is measured (estimated) with certain error, and the process is repeated at each step over the remaining horizon. As a result, we obtain a piecewise constant function of time representing MPC-generated control signal. Hence MPC turns out to be an approximation to the optimal feedback control for the continuous-time system. In our main result we derive an estimate of the difference between the MPC-generated state and control trajectories and the optimal feedback generated state and control trajectories, both obtained for the same value of the perturbation parameter, in terms of the step-size of the discretization and the measurement error. Numerical results illustrating our estimate are reported.
更新日期:2020-03-20

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
伊利诺伊大学香槟分校
徐明华
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug