当前位置: X-MOL 学术J. Phys. Chem. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrothermally derived porous carbon and its improved electrochemical performance for supercapacitors using redox additive electrolytes
Journal of Physics and Chemistry of Solids ( IF 4.3 ) Pub Date : 2020-08-01 , DOI: 10.1016/j.jpcs.2020.109447
Palanisamy Rupa Kasturi , Ramasamy Harivignesh , Yun Sung Lee , Ramakrishnan Kalai Selvan

Abstract The N-rich porous carbon with high surface area is derived from the starch of Artocarpus heterophyllus seed (AHS) through hydrothermal carbonization (HTC) followed by KOH chemical activation. The EDLC's are fabricated using nitrogen inherited porous carbon with and without the addition of 0.05 M VOSO4 as redox additive in the pristine 0.5 M H2SO4 electrolyte. The device delivered an ultrahigh specific capacitance of 133 Fg-1 (at a high current of 15 mA) and high specific energy (32 Whkg−1) at a specific power of 936 Wkg−1 in the redox electrolyte when compared with pristine 0.5 M H2SO4 (92 Fg-1). Similarly, the symmetric redox-mediated EDLC exhibited extended cyclic stability up to 10,000 cycles with a coloumbic efficiency of 97%. These outstanding performance of the fabricated EDLC is due to the excellent faradaic interaction between N-rich, surface-functionalized porous carbon electrode with the redox electrolyte at the electrode-electrolyte interface through the redox reaction between VO2+/VO2+ species. The present work corroborates that the combination of hydrothermal derived porous carbon (HPAC) and redox additive electrolyte is a promising way to enhance the specific capacitance of the electric double-layer capacitors.

中文翻译:

水热衍生的多孔碳及其对使用氧化还原添加剂电解质的超级电容器电化学性能的改善

摘要 具有高表面积的富氮多孔碳是通过水热碳化 (HTC) 和 KOH 化学活化以紫花果果种子 (AHS) 的淀粉为原料制成的。EDLC 是使用氮继承多孔碳制造的,在原始的 0.5 M H2SO4 电解质中添加或不添加 0.05 M VOSO4 作为氧化还原添加剂。与原始的 0.5 M 相比,该装置在氧化还原电解质中以 936 Wkg-1 的比功率提供了 133 Fg-1 的超高比电容(在 15 mA 的高电流下)和高比能量(32 Whkg-1) H2SO4 (92 Fg-1)。同样,对称氧化还原介导的 EDLC 表现出高达 10,000 次循环的扩展循环稳定性,库仑效率为 97%。所制造的 EDLC 的这些出色性能是由于富氮、表面功能化多孔碳电极与电极-电解质界面处的氧化还原电解质之间通过 VO2+/VO2+ 物种之间的氧化还原反应而产生的极好的法拉第相互作用。目前的工作证实,水热衍生的多孔碳 (HPAC) 和氧化还原添加剂电解质的组合是提高双电层电容器比电容的有前途的方法。
更新日期:2020-08-01
down
wechat
bug