当前位置: X-MOL 学术Appl. Mathmat. Model. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic modelling and analysis of wind turbine drivetrain considering the effects of non-torque loads
Applied Mathematical Modelling ( IF 4.4 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.apm.2020.02.018
Zhanwei Li , Binrong Wen , Zhike Peng , Xingjian Dong , Yegao Qu

Abstract With the increase of the rotor diameter and the deterioration of operating conditions, modern wind turbines suffer from more and more significant time-varying non-torque loads, which increases the burden of turbine structures especially the gearbox. Based on an aeroelastic loose coupling approach and assembly of the finite element method, an integrated drivetrain coupling analysis model including blade module, aerodynamic module, and gearbox module is established in this study. This proposed model is validated by comparing the calculation results with previous literature. Taking National Renewable Energy Laboratory 5-MW wind turbine as the research object, the gearbox vibration responses, gear meshing forces and bearing forces under non-torque loads caused by blade gravity, wind shear (WS), tower shadow (TS) and yawed inflow are studied in detail. Results show that the y-direction displacements of the gearbox, sun gear 1, sun gear 2 and gear are larger than those in x-direction because Fy or Mx generated by blade gravity, WS and TS dominates the non-torque loads. The non-torque loads lead to a non-uniform planet load sharing especially for the planetary gear stage 1. Because of the fluctuations of non-torque loads, not only the rotation frequencies of the corresponding carrier but also the multiple frequencies of the carrier 1 are observed in the frequency spectrums. The non-torque loads are mainly borne by carrier 1 bearings. Except for the blade gravity, the bearing forces caused by other unsteady inflows have obvious fluctuations.

中文翻译:

考虑非扭矩载荷影响的风力机动力传动系统动力学建模与分析

摘要 随着转子直径的增大和运行条件的恶化,现代风力机承受的时变非转矩载荷越来越显着,这增加了涡轮机结构特别是齿轮箱的负担。本研究基于气动弹性松耦合方法和有限元方法组装,建立了包括叶片模块、空气动力学模块和齿轮箱模块的集成传动系统耦合分析模型。通过将计算结果与以前的文献进行比较,验证了该模型。以国家可再生能源实验室5MW风机为研究对象,研究了叶片重力、风切变(WS)引起的非扭矩载荷下的齿轮箱振动响应、齿轮啮合力和轴承力,详细研究了塔影(TS)和偏航流入。结果表明,齿轮箱、太阳轮1、太阳轮2和齿轮的y方向位移大于x方向的位移,因为叶片重力产生的Fy或Mx,WS和TS主导了非扭矩载荷。非扭矩负载导致行星负载分配不均匀,尤其是对于行星齿轮级 1。由于非扭矩负载的波动,不仅相应行星架的旋转频率,而且行星架 1 的多个频率也会发生波动。在频谱中观察到。非扭矩载荷主要由载体 1 轴承承担。除叶片重力外,其他非定常流入引起的承载力有明显的波动。由于叶片重力产生的 Fy 或 Mx,WS 和 TS 主导了非扭矩载荷,因此太阳轮 2 和齿轮比 x 方向上的齿轮大。非扭矩负载导致行星负载分配不均匀,尤其是对于行星齿轮级 1。由于非扭矩负载的波动,不仅相应行星架的旋转频率,而且行星架 1 的多个频率也会发生波动。在频谱中观察到。非扭矩载荷主要由载体 1 轴承承担。除叶片重力外,其他非定常流入引起的承载力有明显的波动。由于叶片重力产生的 Fy 或 Mx,WS 和 TS 主导了非扭矩载荷,因此太阳轮 2 和齿轮比 x 方向上的齿轮大。非扭矩负载导致行星负载分配不均匀,尤其是对于行星齿轮级 1。由于非扭矩负载的波动,不仅相应行星架的旋转频率,而且行星架 1 的多个频率也会发生波动。在频谱中观察到。非扭矩载荷主要由载体 1 轴承承担。除叶片重力外,其他非定常流入引起的承载力有明显的波动。由于非扭矩载荷的波动,在频谱中不仅可以观察到相应载体的旋转频率,还可以观察到载体1的多个频率。非扭矩载荷主要由载体 1 轴承承担。除叶片重力外,其他非定常流入引起的承载力有明显的波动。由于非扭矩载荷的波动,在频谱中不仅可以观察到相应载体的旋转频率,还可以观察到载体1的多个频率。非扭矩载荷主要由载体 1 轴承承担。除叶片重力外,其他非定常流入引起的承载力有明显的波动。
更新日期:2020-07-01
down
wechat
bug