当前位置: X-MOL 学术Int. J. Impact. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comparative study on metal/CFRP hybrid structures under static and dynamic loading
International Journal of Impact Engineering ( IF 5.1 ) Pub Date : 2020-07-01 , DOI: 10.1016/j.ijimpeng.2020.103509
Guohua Zhu , Jiapeng Liao , Guangyong Sun , Qing Li

Abstract This study aims to explore the crushing behavior of aluminum (AL) - carbon fiber reinforced plastic (CFRP) tubes with different hybrid configurations subjected to quasi-static and dynamic loading conditions. First, a series of experimental tests are carried out to explore the crushing behaviors of hybrid tubes in comparison with the corresponding individual tubes made of single material. The experimental results indicate that the H-II hybrid tube, made of an outer aluminum circular tube and internally adhered CFRP layers, generates a unique deformation pattern; whose outer aluminum tube inverses externally and inner CFRP layers crush progressively. With these distinctive deformation features, the H-II hybrid tubes are considered to be ideal with superior crashworthiness and energy-absorbing capacity. It is also found that loading rate has little influence on deformation pattern of hybrid tubes and single material tubes, while energy-absorbing capacity of hybrid tubes and individual CFRP tubes under dynamic loading are substantially lower than those under quasi-static loading. Second, numerical simulations are performed for the H-II hybrid tubes to provide further insights into their underlying energy-absorbing mechanisms. It is found that the external inversion mode of the outer aluminum tube is the major energy-absorbing mechanism, in which the contribution of the outer aluminum tube to total energy absorption decreases with increase in thickness of CFRP layers. The internal energy of the externally inversed aluminum tube is considerably higher than internal energy of typical progressively-folded AL tube (sole aluminum tube). Third, a parametric study is further conducted, which indicates that with increasing aluminum wall thickness, the specific energy absorption (SEA) increases. Besides, it is found that varying fiber orientation of inner CFRP layers leads to no evident change in the deformation mode and SEA of the H-II hybrid tubes. When the interfacial strength in between aluminum and CFPR reaches a certain level, there is no evident increase in the total energy absorption with further increase of the interface strength, but the initial peak crushing force increases notably. These results are expected to deepen the understanding of crushing behavior of the H-II hybrid tubes, thereby providing guidance for the crashworthiness design.

中文翻译:

静动载荷作用下金属/CFRP混合结构对比研究

摘要 本研究旨在探讨不同混合配置的铝(AL)-碳纤维增强塑料(CFRP)管在准静态和动态加载条件下的破碎行为。首先,进行了一系列实验测试,以探索混合管与由单一材料制成的相应单个管相比的破碎行为。实验结果表明,由外部铝圆管和内部粘附 CFRP 层制成的 H-II 混合管产生独特的变形模式;其外铝管外翻,内CFRP层逐渐压碎。凭借这些独特的变形特征,H-II 混合管被认为是具有卓越耐撞性和能量吸收能力的理想选择。还发现加载速率对混合管和单一材料管的变形模式影响不大,而混合管和单个CFRP管在动态加载下的吸能能力明显低于准静态加载下的吸能能力。其次,对 H-II 混合管进行数值模拟,以进一步了解其潜在的能量吸收机制。发现外铝管的外反转模式是主要的吸能机制,其中外铝管对总吸能的贡献随着CFRP层厚度的增加而减小。外倒铝管的内能明显高于典型渐进式折叠铝管(单铝管)的内能。第三,进一步进行了参数研究,这表明随着铝壁厚度的增加,比能量吸收 (SEA) 增加。此外,发现内层 CFRP 纤维取向的变化导致 H-II 混合管的变形模式和 SEA 没有明显变化。当铝和CFPR之间的界面强度达到一定水平时,总能量吸收没有随着界面强度的进一步增加而明显增加,但初始峰值破碎力显着增加。这些结果有望加深对 H-II 混合管的挤压行为的理解,从而为耐撞性设计提供指导。此外,发现内层 CFRP 纤维取向的变化导致 H-II 混合管的变形模式和 SEA 没有明显变化。当铝和CFPR之间的界面强度达到一定水平时,总能量吸收没有随着界面强度的进一步增加而明显增加,但初始峰值破碎力显着增加。这些结果有望加深对 H-II 混合管的挤压行为的理解,从而为耐撞性设计提供指导。此外,发现内层 CFRP 纤维取向的变化导致 H-II 混合管的变形模式和 SEA 没有明显变化。当铝和CFPR之间的界面强度达到一定水平时,总能量吸收没有随着界面强度的进一步增加而明显增加,但初始峰值破碎力显着增加。这些结果有望加深对 H-II 混合管的挤压行为的理解,从而为耐撞性设计提供指导。随着界面强度的进一步增加,总能量吸收没有明显增加,但初始峰值破碎力显着增加。这些结果有望加深对 H-II 混合管的挤压行为的理解,从而为耐撞性设计提供指导。随着界面强度的进一步增加,总能量吸收没有明显增加,但初始峰值破碎力显着增加。这些结果有望加深对 H-II 混合管的挤压行为的理解,从而为耐撞性设计提供指导。
更新日期:2020-07-01
down
wechat
bug