当前位置: X-MOL 学术Commun. Nonlinear Sci. Numer. Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
One-dimensional localized modes of spin-orbit-coupled Bose-Einstein condensates with spatially periodic modulated atom-atom interactions: Nonlinear lattices
Communications in Nonlinear Science and Numerical Simulation ( IF 3.4 ) Pub Date : 2020-02-07 , DOI: 10.1016/j.cnsns.2020.105217
Junbo Chen , Jianhua Zeng

Bose-Einstein condensates (BECs) provide a clear and controllable platform to study diverse intriguing emergent nonlinear effects that appear too in other physical settings, such as bright and dark solitons in mean-field theory as well as many-body physics. Various ways have been elaborated to stabilize bright solitons in BECs, three promising schemes among which are: optical lattices formed by counterpropagating laser beams, nonlinear managements mediated by Feshbach resonance, spin-orbit coupling engineered by dressing atomic spin states (hyperfine states of spinor atomic BECs) with laser beams. By combing the latter two schemes, we discover, from theory to calculations, that the two-component BECs with a spin-orbit coupling and cubic atom-atom interactions, whose nonlinear distributions exhibit a well-defined spatially periodic modulation (nonlinear lattice), can support one-dimensional localized modes of two kinds: fundamental solitons (with a single peak), and soliton pairs comprised of dipole solitons (anti-phase) or two-peak solitons (in-phase). The influence of three physical parameters: chemical potential of the system, strengths of both the Rashba spin-orbit coupling and atom-atom interactions, on the existence and stability of the localized modes is investigated based on linear-stability analysis and direct perturbed simulations. In particular, we demonstrate that the localized modes can be stable objects provided always that both the inter- and intraspecies interactions are attractive.



中文翻译:

具有空间周期性调制原子-原子相互作用的自旋轨道耦合玻色-爱因斯坦凝聚体的一维局部化模式:非线性晶格

玻色-爱因斯坦凝聚物(BEC)提供了一个清晰而可控的平台,用于研究在其他物理环境中也会出现的各种有趣的新兴非线性效应,例如平均场理论中的明暗孤子以及多体物理学。已经阐明了多种方法来稳定BEC中的亮孤子,其中三个有希望的方案是:由反向传播的激光束形成的光学晶格,由Feshbach共振介导的非线性管理,由修整原子自旋态(自旋原子的超精细态)设计的自旋轨道耦合。 BEC)。通过结合后两种方案,我们发现,从理论到计算,具有自旋轨道耦合和立方原子-原子相互作用的两组分BEC,其非线性分布具有明确定义的空间周期性调制(非线性晶格),可以支持两种一维局部模式:基本孤子(具有单个峰)和由偶极子孤子(反相)组成的孤子对(两个)峰孤子(同相)。基于线性稳定性分析和直接扰动仿真,研究了三个物理参数:系统的化学势,Rashba自旋轨道耦合强度和原子-原子相互作用的强度对局部模式的存在和稳定性的影响。特别是,我们证明了只要种间和种内相互作用都具有吸引力,本地化模式就可以是稳定的对象。基本孤子(具有一个峰值),以及由偶极子孤子(反相)或两峰孤子(同相)组成的孤子对。基于线性稳定性分析和直接扰动仿真,研究了三个物理参数:系统的化学势,Rashba自旋轨道耦合强度和原子-原子相互作用的强度对局部模式的存在和稳定性的影响。特别是,我们证明了只要种间和种内相互作用都具有吸引力,本地化模式就可以是稳定的对象。基本孤子(具有一个峰值),以及由偶极子孤子(反相)或两峰孤子(同相)组成的孤子对。基于线性稳定性分析和直接扰动仿真,研究了三个物理参数:系统的化学势,Rashba自旋轨道耦合强度和原子-原子相互作用的强度对局部模式的存在和稳定性的影响。特别是,我们证明了只要种间和种内相互作用都具有吸引力,本地化模式就可以是稳定的对象。基于线性稳定性分析和直接扰动仿真研究了局部模式的存在性和稳定性。特别是,我们证明了只要种间和种内相互作用都具有吸引力,本地化模式就可以是稳定的对象。基于线性稳定性分析和直接扰动仿真研究了局部模式的存在性和稳定性。特别是,我们证明了只要种间和种内相互作用都具有吸引力,本地化模式就可以是稳定的对象。

更新日期:2020-02-07
down
wechat
bug