当前位置: X-MOL 学术J. Contam. Hydrol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanisms that influence the interactions between remediation agent injection and contamination plume variation.
Journal of Contaminant Hydrology ( IF 3.5 ) Pub Date : 2020-02-21 , DOI: 10.1016/j.jconhyd.2020.103631
Xinran Song 1 , Jiajun Chen 1 , Qi Xu 1 , Yiti Wang 1
Affiliation  

To study the interactions between remediation agent injection and hydrodynamic dispersion as well as the expansion of a contamination plume, a two-dimensional sandbox experiment was conducted to simulate and monitor the mixing of a remediation agent in the contamination plume and the expansion of the contamination plume over time. Potassium permanganate is a purple solution, and it represents the remediation agent; Perchloroethylene (PCE), is dyed green and was used to observe the migration and diffusion of the contaminant and the overlap of contamination and the agent-plume. Six quantitative characterization parameters: migration distance, (dM), migration area, (AM), initial area ratio, (Ki), spreading speed difference, (SSD), area ratio, (KA) and migration distance ratio, (Kd), are proposed to comprehensively analyse the influence of the three factors of injection pressure, particle size and viscosity change on the mixing of a remediation agent and the expansion of the contamination plume over time. The results show that these six parameters can effectively characterize the mixing of the remediation agent and the expansion of the contamination plume, where dM, AM and Ki characterize the expansion and the other three parameters characterize the mixing. The factors increasing the expansion of the contamination plume follow the order: 40 cm > 30 cm > 20 cm, for injection pressure (water head); coarse sand > medium sand > fine sand for particle size; and no polymer added > added polymer 200 mg/L > added polymer 800 mg/L > added polymer 400 mg/L for viscosity adjustment. The factors that intensify the mixing of the remediation agent in the contamination plume follow the order: 20 cm > 30 cm > 40 cm (water head); coarse sand > medium sand > fine sand; and added polymer 400 mg/L > added polymer 200 mg/L > no polymer added> added polymer 800 mg/L. Finally, conclusions from the TOPSIS method show that under optimal injection conditions, mixing is enhanced without increasing plume expansion and that the optimum injection conditions are injection pressure = 20 cm, use of a coarse sand medium, and added polymer concentration = 400 mg/L.



中文翻译:

影响修复剂注入和污染羽流变化之间相互作用的机制。

为了研究修复剂注入与流体动力扩散以及污染物羽流的膨胀之间的相互作用,进行了二维沙箱实验,以模拟和监测修复剂在污染物羽流中的混合以及污染物羽流的膨胀随着时间的推移。高锰酸钾是一种紫色溶液,代表修复剂。全氯乙烯(PCE)被染成绿色,用于观察污染物的迁移和扩散以及污染物和药剂-泡沫的重叠。六个定量表征参数:迁移距离(d M),迁移面积(A M),初始面积比(K i),扩散速度差,(SSD),面积比,(ķ)和迁移距离比(ķ d),提出了综合分析在混合注射压力,粒径和粘度变化的三个因素的影响随着时间的流逝,修复剂的使用和污染羽流的膨胀。结果表明,这六个参数可以有效地表征修复剂的混合和污染羽的膨胀,其中d MA M和K i表征膨胀,其他三个参数表征混合。增加污染羽流膨胀的因素依次为:注射压力(水头)为40 cm> 30 cm> 20 cm;粗砂>中砂>细砂粒度 并且未添加任何聚合物>添加的聚合物200 mg / L>添加的聚合物800 mg / L>添加的聚合物400 mg / L用于调节粘度。加剧污染污泥中补救剂混合的因素如下:20 cm> 30 cm> 40 cm(水头);粗砂>中砂>细砂; 添加的聚合物400 mg / L>添加的聚合物200 mg / L>不添加聚合物>添加的聚合物800 mg / L。最后,TOPSIS方法的结论表明,在最佳注射条件下,

更新日期:2020-02-21
down
wechat
bug